Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 620(7976): 1101-1108, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612504

RESUMEN

Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions.


Asunto(s)
GTP Fosfohidrolasas , Fusión de Membrana , Mitocondrias , Membranas Mitocondriales , Humanos , Biocatálisis , Cardiolipinas/química , Cardiolipinas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias/química , Mitocondrias/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Mutación , Dominios Proteicos , Multimerización de Proteína , Dinámicas Mitocondriales
2.
Nature ; 558(7710): 401-405, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899447

RESUMEN

Mitochondrial inheritance, genome maintenance and metabolic adaptation depend on organelle fission by dynamin-related protein 1 (DRP1) and its mitochondrial receptors. DRP1 receptors include the paralogues mitochondrial dynamics proteins of 49 and 51 kDa (MID49 and MID51) and mitochondrial fission factor (MFF); however, the mechanisms by which these proteins recruit and regulate DRP1 are unknown. Here we present a cryo-electron microscopy structure of full-length human DRP1 co-assembled with MID49 and an analysis of structure- and disease-based mutations. We report that GTP induces a marked elongation and rotation of the GTPase domain, bundle-signalling element and connecting hinge loops of DRP1. In this conformation, a network of multivalent interactions promotes the polymerization of a linear DRP1 filament with MID49 or MID51. After co-assembly, GTP hydrolysis and exchange lead to MID receptor dissociation, filament shortening and curling of DRP1 oligomers into constricted and closed rings. Together, these views of full-length, receptor- and nucleotide-bound conformations reveal how DRP1 performs mechanical work through nucleotide-driven allostery.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/ultraestructura , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Factores de Elongación de Péptidos/metabolismo , Factores de Elongación de Péptidos/ultraestructura , Regulación Alostérica , Sitios de Unión/genética , Microscopía por Crioelectrón , Proteínas Quinasas Asociadas a Muerte Celular/química , Proteínas Quinasas Asociadas a Muerte Celular/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Proteínas Mitocondriales/química , Modelos Moleculares , Mutación , Factores de Elongación de Péptidos/química , Fosforilación , Dominios Proteicos , Rotación , Relación Estructura-Actividad
3.
Proc Natl Acad Sci U S A ; 110(15): E1342-51, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530241

RESUMEN

Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity.


Asunto(s)
Dinamina I/química , Dinaminas/química , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Saccharomyces cerevisiae/metabolismo , División Celular , GTP Fosfohidrolasas/química , Proteínas Fluorescentes Verdes/química , Guanosina Trifosfato/química , Humanos , Hidrólisis , Proteínas de la Membrana/química , Proteínas Mitocondriales/química , Mitofagia , Polímeros/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/química
4.
Nat Cell Biol ; 22(6): 674-688, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32451441

RESUMEN

The dynamin GTPase is known to bundle actin filaments, but the underlying molecular mechanism and physiological relevance remain unclear. Our genetic analyses revealed a function of dynamin in propelling invasive membrane protrusions during myoblast fusion in vivo. Using biochemistry, total internal reflection fluorescence microscopy, electron microscopy and cryo-electron tomography, we show that dynamin bundles actin while forming a helical structure. At its full capacity, each dynamin helix captures 12-16 actin filaments on the outer rim of the helix. GTP hydrolysis by dynamin triggers disassembly of fully assembled dynamin helices, releasing free dynamin dimers/tetramers and facilitating Arp2/3-mediated branched actin polymerization. The assembly/disassembly cycles of dynamin promote continuous actin bundling to generate mechanically stiff actin super-bundles. Super-resolution and immunogold platinum replica electron microscopy revealed dynamin along actin bundles at the fusogenic synapse. These findings implicate dynamin as a unique multifilament actin-bundling protein that regulates the dynamics and mechanical strength of the actin cytoskeletal network.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Comunicación Celular , Drosophila melanogaster/metabolismo , Dinaminas/metabolismo , Endocitosis , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/genética , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Dinaminas/genética , Femenino , Guanosina Trifosfato/metabolismo , Masculino , Mioblastos/citología , Mioblastos/metabolismo , Unión Proteica , Homología de Secuencia
5.
Mol Biol Cell ; 30(17): 2097-2104, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31365329

RESUMEN

Cells have evolved diverse protein-based machinery to reshape, cut, or fuse their membrane-delimited compartments. Dynamin superfamily proteins are principal components of this machinery and use their ability to hydrolyze GTP and to polymerize into helices and rings to achieve these goals. Nucleotide-binding, hydrolysis, and exchange reactions drive significant conformational changes across the dynamin family, and these changes alter the shape and stability of supramolecular dynamin oligomers, as well as the ability of dynamins to bind receptors and membranes. Mutations that interfere with the conformational repertoire of these enzymes, and hence with membrane fission, exist in several inherited human diseases. Here, we discuss insights from new x-ray crystal structures and cryo-EM reconstructions that have enabled us to infer some of the allosteric dynamics for these proteins. Together, these studies help us to understand how dynamins perform mechanical work, as well as how specific mutants of dynamin family proteins exhibit pathogenic properties.


Asunto(s)
Dinaminas/genética , Dinaminas/metabolismo , Fusión de Membrana/fisiología , Animales , Dinaminas/fisiología , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Membranas/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína
6.
Nat Commun ; 9(1): 2197, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875445

RESUMEN

Eukaryotic cells employ the ribosome-associated quality control complex (RQC) to maintain homeostasis despite defects that cause ribosomes to stall. The RQC comprises the E3 ubiquitin ligase Ltn1p, the ATPase Cdc48p, Rqc1p, and Rqc2p. Upon ribosome stalling and splitting, the RQC assembles on the 60S species containing unreleased peptidyl-tRNA (60S:peptidyl-tRNA). Ltn1p and Rqc1p facilitate ubiquitination of the incomplete nascent chain, marking it for degradation. Rqc2p stabilizes Ltn1p on the 60S and recruits charged tRNAs to the 60S to catalyze elongation of the nascent protein with carboxy-terminal alanine and threonine extensions (CAT tails). By mobilizing the nascent chain, CAT tailing can expose lysine residues that are hidden in the exit tunnel, thereby supporting efficient ubiquitination. If the ubiquitin-proteasome system is overwhelmed or unavailable, CAT-tailed nascent chains can aggregate in the cytosol or within organelles like mitochondria. Here we identify Vms1p as a tRNA hydrolase that releases stalled polypeptides engaged by the RQC.


Asunto(s)
Proteínas Portadoras/genética , Biosíntesis de Proteínas/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Control de Calidad , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
7.
Methods Cell Biol ; 128: 165-200, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25997348

RESUMEN

Building cells from their component parts will hinge upon our ability to reconstitute biochemical compartmentalization and exchange between membrane-delimited organelles. By contrast with our understanding of other cellular events, the mechanisms that govern membrane trafficking has lagged because the presence of phospholipid bilayers complicates the use of standard methods. This chapter describes in vitro methods for purifying, reconstituting, and visualizing membrane remodeling activities directly by electron cryomicroscopy.


Asunto(s)
Aciltransferasas/metabolismo , Membrana Celular/metabolismo , Microscopía por Crioelectrón/métodos , Dinaminas/metabolismo , Animales , Línea Celular , Dinaminas/biosíntesis , Endocitosis/fisiología , Escherichia coli/metabolismo , Membrana Dobles de Lípidos , Estructura Terciaria de Proteína , Células Sf9 , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA