RESUMEN
The enteric nervous system (ENS) consists of an extensive network of neurons and glial cells embedded within the wall of the gastrointestinal (GI) tract. Alterations in neuronal distribution and function are strongly associated with GI dysfunction. Current methods for assessing neuronal distribution suffer from undersampling, partly due to challenges associated with imaging and analyzing large tissue areas, and operator bias due to manual analysis. We present the Gut Analysis Toolbox (GAT), an image analysis tool designed for characterization of enteric neurons and their neurochemical coding using 2D images of GI wholemount preparations. It is developed in Fiji, has a user-friendly interface and offers rapid and accurate segmentation via custom deep learning (DL) based cell segmentation models developed using StarDist, and a ganglion segmentation model in deepImageJ. We use proximal neighbor-based spatial analysis to reveal differences in cellular distribution across gut regions using a public dataset. In summary, GAT provides an easy-to-use toolbox to streamline routine image analysis tasks in ENS research. GAT enhances throughput allowing unbiased analysis of larger tissue areas, multiple neuronal markers and numerous samples rapidly.
RESUMEN
GABAergic interneurons are key elements in neural coding, but the mechanisms that assemble inhibitory circuits remain unclear. In the spinal cord, the transfer of sensory signals to motor neurons is filtered by GABAergic interneurons that act presynaptically to inhibit sensory transmitter release and postsynaptically to inhibit motor neuron excitability. We show here that the connectivity and synaptic differentiation of GABAergic interneurons that mediate presynaptic inhibition is directed by their sensory targets. In the absence of sensory terminals these GABAergic neurons shun other available targets, fail to undergo presynaptic differentiation, and withdraw axons from the ventral spinal cord. A sensory-specific source of brain derived neurotrophic factor induces synaptic expression of the GABA synthetic enzyme GAD65--a defining biochemical feature of this set of interneurons. The organization of a GABAergic circuit that mediates presynaptic inhibition in the mammalian CNS is therefore controlled by a stringent program of sensory recognition and signaling.
Asunto(s)
Interneuronas/fisiología , Médula Espinal/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glutamato Descarboxilasa , Ratones , Neuronas Motoras/fisiología , Terminales Presinápticos , Propiocepción , Células Receptoras Sensoriales/fisiología , Médula Espinal/citologíaRESUMEN
Neural tube defects (NTDs) are a classic example of preventable birth defects for which there is a proven-effective intervention, folic acid (FA); however, further methods of prevention remain unrealized. In the decades following implementation of FA nutritional fortification programs throughout at least 87 nations, it has become apparent that not all NTDs can be prevented by FA. In the United States, FA fortification only reduced NTD rates by 28-35% (Williams et al., 2015). As such, it is imperative that further work is performed to understand the risk factors associated with NTDs and their underlying mechanisms so that alternative prevention strategies can be developed. However, this is complicated by the sheer number of genes associated with neural tube development, the heterogeneity of observable phenotypes in human cases, the rareness of the disease, and the myriad of environmental factors associated with NTD risk. Given the complex genetic architecture underlying NTD pathology and the way in which that architecture interacts dynamically with environmental factors, further prevention initiatives will undoubtedly require precision medicine strategies that utilize the power of human genomics and modern tools for assessing genetic risk factors. Herein, we review recent advances in genomic strategies for discovering genetic variants associated with these defects, and new ways in which biological models, such as mice and cell culture-derived organoids, are leveraged to assess mechanistic functionality, the way these variants interact with other genetic or environmental factors, and their ultimate contribution to human NTD risk.
Asunto(s)
Genómica/métodos , Defectos del Tubo Neural/genética , Animales , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Humanos , Mutación , Defectos del Tubo Neural/metabolismoRESUMEN
The role of synaptic activity during early formation of neural circuits is a topic of some debate; genetic ablation of neurotransmitter release by deletion of the Munc18-1 gene provides an excellent model to answer the question of whether such activity is required for early circuit formation. Previous analysis of Munc18-1(-/-) mouse mutants documented their grossly normal nervous system, but its molecular differentiation has not been assessed. Munc18-1 deletion in mice also results in widespread neurodegeneration that remains poorly characterized. In this study, we demonstrate that the early stages of spinal motor circuit formation, including motor neuron specification, axon growth and pathfinding, and mRNA expression, are unaffected in Munc18-1(-/-) mice, demonstrating that synaptic activity is dispensable for early nervous system development. Furthermore, we show that the neurodegeneration caused by Munc18-1 loss is cell autonomous, consistent with apparently normal expression of several neurotrophic factors and normal GDNF signaling. Consistent with cell-autonomous degeneration, we demonstrate defects in the trafficking of the synaptic proteins Syntaxin1a and PSD-95 and the TrkB and DCC receptors in Munc18-1(-/-) neurons; these defects do not appear to cause ER stress, suggesting other mechanisms for degeneration. Finally, we demonstrate pathological similarities to Alzheimer's disease, such as altered Tau phosphorylation, neurofibrillary tangles, and accumulation of insoluble protein plaques. Together, our results shed new light upon the neurodegeneration observed in Munc18-1(-/-) mice and argue that this phenomenon shares parallels with neurodegenerative diseases. SIGNIFICANCE STATEMENT: In this work, we demonstrate the absence of a requirement for regulated neurotransmitter release in the assembly of early neuronal circuits by assaying transcriptional identity, axon growth and guidance, and mRNA expression in Munc18-1-null mice. Furthermore, we characterize the neurodegeneration observed in Munc18-1 mutants and demonstrate that this cell-autonomous process does not appear to be a result of defects in growth factor signaling or ER stress caused by protein trafficking defects. However, we find the presence of various pathological hallmarks of Alzheimer's disease that suggest parallels between the degeneration in these mutants and neurodegenerative conditions.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Neuronas Motoras/patología , Proteínas Munc18/deficiencia , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Médula Espinal/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Muerte Celular/genética , Receptor DCC , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Guanilato-Quinasas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Munc18/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Transporte de Proteínas/genética , Receptor trkB/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/genética , Médula Espinal/embriología , Sintaxina 1/metabolismo , Proteínas Supresoras de Tumor/metabolismoRESUMEN
The intracellular transcriptional milieu wields considerable influence over the induction of neuronal identity. The transcription factor Ptf1a has been proposed to act as an identity "switch" between developmentally related precursors in the spinal cord (Glasgow et al., 2005; Huang et al., 2008), retina (Fujitani et al., 2006; Dullin et al., 2007; Nakhai et al., 2007; Lelièvre et al., 2011), and cerebellum (Hoshino et al., 2005; Pascual et al., 2007; Yamada et al., 2014), where it promotes an inhibitory over an excitatory neuronal identity. In this study, we investigate the potency of Ptf1a to cell autonomously confer a specific neuronal identity outside of its endogenous environment, using mouse in utero electroporation and a conditional genetic strategy to misexpress Ptf1a exclusively in developing cortical pyramidal cells. Transcriptome profiling of Ptf1a-misexpressing cells using RNA-seq reveals that Ptf1a significantly alters pyramidal cell gene expression, upregulating numerous Ptf1a-dependent inhibitory interneuron markers and ultimately generating a gene expression profile that resembles the transcriptomes of both Ptf1a-expressing spinal interneurons and endogenous cortical interneurons. Using RNA-seq and in situ hybridization analyses, we also show that Ptf1a induces expression of the peptidergic neurotransmitter nociceptin, while minimally affecting the expression of genes linked to other neurotransmitter systems. Moreover, Ptf1a alters neuronal morphology, inducing the radial redistribution and branching of neurites in cortical pyramidal cells. Thus Ptf1a is sufficient, even in a dramatically different neuronal precursor, to cell autonomously promote characteristics of an inhibitory peptidergic identity, providing the first example of a single transcription factor that can direct an inhibitory peptidergic fate.
Asunto(s)
Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/fisiología , Animales , Animales Recién Nacidos , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Biología Computacional , Electroporación , Embrión de Mamíferos , Proteínas del Ojo/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Antígeno Ki-67/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteínas Represoras/metabolismo , Estadísticas no Paramétricas , Factores de Transcripción/genética , Tubulina (Proteína)/metabolismoRESUMEN
The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung's disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? We review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.
Asunto(s)
Sistema Nervioso Entérico , Motilidad Gastrointestinal , Enfermedad de Hirschsprung , Sistema Nervioso Entérico/fisiopatología , Sistema Nervioso Entérico/patología , Humanos , Animales , Enfermedad de Hirschsprung/patología , Enfermedad de Hirschsprung/fisiopatología , Ratones , Neuronas/patología , Neuronas/metabolismo , Seudoobstrucción Intestinal/patología , Seudoobstrucción Intestinal/fisiopatología , Tipificación del CuerpoRESUMEN
BACKGROUND: Accurately reporting the identity and representation of enteric nervous system (ENS) neuronal subtypes along the length of the gastrointestinal (GI) tract is critical to advancing our understanding of ENS control of GI function. Reports of varying proportions of subtype marker expression have employed different dissection techniques to achieve wholemount muscularis preparations of myenteric plexus. In this study, we asked whether differences in GI dissection methods could introduce variability into the quantification of marker expression. METHODS: We compared three commonly used methods of ENS wholemount dissection: two flat-sheet preparations that differed in the order of microdissection and fixation and a third rod-mounted peeling technique. We also tested a reversed orientation variation of flat-sheet peeling, two step-by-step variations of the rod peeling technique, and whole-gut fixation as a tube. We assessed marker expression using immunohistochemistry, genetic reporter lines, confocal microscopy, and automated image analysis. KEY RESULTS AND CONCLUSIONS: We found no significant differences between the two flat-sheet preparation methods in the expression of calretinin or neuronal nitric oxide synthase (nNOS) as a proportion of total neurons in ileum myenteric plexus. However, the rod-mounted peeling method resulted in decreased proportion of neurons labeled for both calretinin and nNOS. This method also resulted in decreased transgenic reporter fluorescent protein (tdTomato) for substance P in distal colon and choline acetyltransferase (ChAT) in both ileum and distal colon. These results suggest that labeling among some markers, both native protein and transgenic fluorescent reporters, is decreased by the rod-mounted mechanical method of peeling. The step-by-step variations of this method point to mechanical manipulation of the tissue as the likely cause of decreased labeling. Our study thereby demonstrates a critical variability in wholemount muscularis dissection methods.
Asunto(s)
Sistema Nervioso Entérico , Plexo Mientérico , Ratones , Animales , Plexo Mientérico/química , Calbindina 2/metabolismo , Sistema Nervioso Entérico/metabolismo , Neuronas/metabolismo , ColonRESUMEN
BACKGROUND: Spontaneous neuronal network activity is essential to the functional maturation of central and peripheral circuits, yet whether this is a feature of enteric nervous system development has yet to be established. Although enteric neurons are known exhibit electrophysiological properties early in embryonic development, no connection has been drawn between this neuronal activity and the development of gastrointestinal (GI) motility patterns. METHODS: We use ex vivo GI motility assays with newly developed unbiased computational analyses to identify GI motility patterns across mouse embryonic development. KEY RESULTS: We find a previously unknown pattern of neurogenic contractions termed "clustered ripples" that arises spontaneously at embryonic day 16.5, an age earlier than any identified mature GI motility patterns. We further show that these contractions are driven by nicotinic cholinergic signaling. CONCLUSIONS & INFERENCES: Clustered ripples are neurogenic contractile activity that arise from spontaneous ENS activity and precede all known forms of neurogenic GI motility. This earliest motility pattern requires nicotinic cholinergic signaling, which may inform pharmacology for enhancing GI motility in preterm infants.
RESUMEN
Researchers have advocated elevating mouse housing temperatures from the conventional ~22 °C to the mouse thermoneutral point of 30 °C to enhance translational research. However, the impact of environmental temperature on mouse gastrointestinal physiology remains largely unexplored. Here we show that mice raised at 22 °C exhibit whole gut transit speed nearly twice as fast as those raised at 30 °C, primarily driven by a threefold increase in colon transit speed. Furthermore, gut microbiota composition differs between the two temperatures but does not dictate temperature-dependent differences in gut motility. Notably, increased stress signals from the hypothalamic-pituitary-adrenal axis at 22 °C have a pivotal role in mediating temperature-dependent differences in gut motility. Pharmacological and genetic depletion of the stress hormone corticotropin-releasing hormone slows gut motility in stressed 22 °C mice but has no comparable effect in relatively unstressed 30 °C mice. In conclusion, our findings highlight that colder mouse facility temperatures significantly increase gut motility through hormonal stress pathways.
Asunto(s)
Motilidad Gastrointestinal , Ratones Endogámicos C57BL , Estrés Fisiológico , Animales , Ratones , Masculino , Temperatura , Sistema Hipotálamo-Hipofisario/fisiología , Microbioma Gastrointestinal , Sistema Hipófiso-Suprarrenal/fisiología , Hormona Liberadora de Corticotropina/metabolismoRESUMEN
Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here we investigated synaptic cell adhesion molecules as novel cell type markers in the ENS. Our work identifies two Type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and I H current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current I H disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons, and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.
RESUMEN
The enteric nervous system (ENS) is contained within two layers of the gut wall and is made up of neurons, immune cells, and enteric glia cells (EGCs) that regulate gastrointestinal (GI) function. EGCs in both inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) change in response to inflammation, referred to as reactive gliosis. Whether EGCs restricted to a specific layer or region within the GI tract alone can influence intestinal immune response is unknown. Using bulk RNA-sequencing and in situ hybridization, we identify G-protein coupled receptor Gpr37 , as a gene expressed only in EGCs of the myenteric plexus, one of the two layers of the ENS. We show that Gpr37 contributes to key components of LPS-induced reactive gliosis including activation of NF-kB and IFN-y signaling and response genes, lymphocyte recruitment, and inflammation-induced GI dysmotility. Targeting Gpr37 in EGCs presents a potential avenue for modifying inflammatory processes in the ENS.
RESUMEN
Optical imaging plays a central role in biology and medicine but is hindered by light scattering in live tissue. We report the counterintuitive observation that strongly absorbing molecules can achieve optical transparency in live animals. We explored the physics behind this observation and found that when strongly absorbing molecules dissolve in water, they can modify the refractive index of the aqueous medium through the Kramers-Kronig relations to match that of high-index tissue components such as lipids. We have demonstrated that our straightforward approach can reversibly render a live mouse body transparent to allow visualization of a wide range of deep-seated structures and activities. This work suggests that the search for high-performance optical clearing agents should focus on strongly absorbing molecules.
Asunto(s)
Imagen Óptica , Animales , Ratones , Luz , Imagen Óptica/métodos , Refractometría , Dispersión de Radiación , Agua/química , Piel , MúsculosRESUMEN
Motor pools comprise a heterogeneous population of motor neurons that innervate distinct intramuscular targets. While the organization of motor neurons into motor pools has been well described, the time course and mechanism of motor pool diversification into functionally distinct classes remains unclear. γ-Motor neurons (γ-MNs) and α-motor neurons (α-MNs) differ in size, molecular identity, synaptic input and peripheral target. While α-MNs innervate extrafusal skeletal muscle fibers to mediate muscle contraction, γ-MNs innervate intrafusal fibers of the muscle spindle, and regulate sensitivity of the muscle spindle in response to stretch. In this study, we find that the secreted signaling molecule Wnt7a is selectively expressed in γ-MNs in the mouse spinal cord by embryonic day 17.5 and continues to molecularly distinguish γ-from α-MNs into the third postnatal week. Our data demonstrate that Wnt7a is the earliest known γ-MN marker, supporting a model of developmental divergence between α- and γ-MNs at embryonic stages. Furthermore, using Wnt7a expression as an early marker of γ-MN identity, we demonstrate a previously unknown dependence of γ-MNs on a muscle spindle-derived, GDNF-independent signal during the first postnatal week.
Asunto(s)
Neuronas Motoras gamma/metabolismo , Husos Musculares/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , Animales , Biomarcadores/metabolismo , Tamaño de la Célula , Supervivencia Celular , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Inmunohistoquímica , Ratones , Ratones Noqueados , Embarazo , Médula Espinal/embriología , Médula Espinal/metabolismoRESUMEN
Background: Accurately reporting the identity and representation of enteric nervous system (ENS) neuronal subtypes along the length of the gastrointestinal (GI) tract is critical to advancing our understanding of ENS control of GI tract function. Reports of varying proportions of subtype marker expression have employed different dissection techniques to achieve wholemount muscularis preparations of myenteric plexus. In this study we asked whether differences in GI dissection methods could introduce variability into the quantification of marker expression. Methods: We compared three commonly used methods of ENS wholemount dissection: two flat-sheet preparations that differed in the order of microdissection and fixation as well as a rod-mounted peeling technique. We assessed marker expression using immunohistochemistry, genetic reporter lines, confocal microscopy, and automated image analysis. Key Results and Conclusions: We found no significant differences between the two flat-sheet preparation methods in the expression of calretinin, neuronal nitric oxide synthase (nNOS), or somatostatin (SST) in ileum myenteric plexus. However, the rod-mounted peeling method resulted in decreased marker labeling for both calretinin and nNOS. This method also resulted in decreased transgenic reporter fluorescent protein (tdTomato) for substance P in ileum and choline acetyltransferase (ChAT) in both ileum and distal colon. These results suggest that labeling among some markers, both native protein and transgenic fluorescent reporters, is decreased by the rod-mounted mechanical method of peeling, demonstrating a critical variability in wholemount muscularis dissection methods.
RESUMEN
Gastrointestinal (GI) symptoms are highly prevalent among individuals with autism spectrum disorder (ASD), but the molecular link between ASD and GI dysfunction remains poorly understood. The enteric nervous system (ENS) is critical for normal GI motility and has been shown to be altered in mouse models of ASD and other neurological disorders. Contactin-associated protein-like 2 (Cntnap2) is an ASD-related synaptic cell-adhesion molecule important for sensory processing. In this study, we examine the role of Cntnap2 in GI motility by characterizing Cntnap2's expression in the ENS and assessing GI function in Cntnap2 mutant mice. We find Cntnap2 expression predominately in enteric sensory neurons. We further assess in vivo and ex vivo GI motility in Cntnap2 mutants and show altered transit time and colonic motility patterns. The overall organization of the ENS appears undisturbed. Our results suggest that Cntnap2 plays a role in GI function and may provide a molecular link between ASD and GI dysfunction.
RESUMEN
Gastrointestinal (GI) symptoms are highly prevalent among individuals with autism spectrum disorder (ASD), but the molecular link between ASD and GI dysfunction remains poorly understood. The enteric nervous system (ENS) is critical for normal GI motility and has been shown to be altered in mouse models of ASD and other neurological disorders. Contactin-associated protein-like 2 (Cntnap2) is an ASD-related synaptic cell-adhesion molecule important for sensory processing. In this study, we examine the role of Cntnap2 in GI motility by characterizing Cntnap2's expression in the ENS and assessing GI function in Cntnap2 mutant mice. We find Cntnap2 expression predominately in enteric sensory neurons. We further assess in-vivo and ex-vivo GI motility in Cntnap2 mutants and show altered transit time and colonic motility patterns. The overall organization of the ENS appears undisturbed. Our results suggest that Cntnap2 plays a role in GI function and may provide a molecular link between ASD and GI dysfunction.
RESUMEN
Immature gastrointestinal motility impedes preterm infant survival. The enteric nervous system controls gastrointestinal motility, yet it is unknown when the human enteric nervous system matures enough to carry out vital functions. Here we demonstrate that the second trimester human fetal enteric nervous system takes on a striped organization akin to the embryonic mouse. Further, we perform ex vivo functional assays of human fetal tissue and find that human fetal gastrointestinal motility matures in a similar progression to embryonic mouse gastrointestinal motility. Together, this provides critical knowledge, which facilitates comparisons with common animal models to advance translational disease investigations and testing of pharmacological agents to enhance gastrointestinal motility in prematurity.
Asunto(s)
Sistema Nervioso Entérico , Recien Nacido Prematuro , Recién Nacido , Lactante , Humanos , Animales , Ratones , Bioensayo , Feto , Motilidad GastrointestinalRESUMEN
Spontaneous neuronal network activity is essential in development of central and peripheral circuits, yet whether this is a feature of enteric nervous system development has yet to be established. Using ex vivo gastrointestinal (GI) motility assays with unbiased computational analyses, we identify a previously unknown pattern of spontaneous neurogenic GI motility. We further show that this motility is driven by cholinergic signaling, which may inform GI pharmacology for preterm patients.
RESUMEN
The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.
Asunto(s)
Sistema Nervioso Entérico , Ganglios , Multiómica , Neurogénesis , Neuroglía , Análisis de la Célula Individual , Neuroglía/clasificación , Neuroglía/citología , Neuroglía/metabolismo , Neurogénesis/genética , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ARN/análisis , ARN/genética , Ganglios/citología , Masculino , Femenino , Animales , Ratones , Sistema Nervioso Entérico/citología , Análisis de Expresión Génica de una Sola Célula , Técnicas de Cultivo de Célula , Intestino Delgado/citología , DesteteRESUMEN
Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.