Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Res ; 281: 127604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280370

RESUMEN

Ralstonia solanacearum is a devastating soilborne pathogen which poses significant yield and economic losses to tobacco production globally. The impact of R. solanacearum on rhizosphere bacteriome and soil physicochemical characteristics in resistant and susceptible tobacco cultivars is poorly understood. This study aims to determine the effect of R. solanacearum on soil physicochemical parameters and rhizosphere bacteriome of resistant (K326) and susceptible (Hongda) tobacco cultivars at various growth stages. Results demonstrated that the contents of available potassium and phosphorus, as well as soil pH were significantly increased in K326 soils (CK and T2) compared with Hongda (T1) after 21, 42, and 63 days post-inoculation (dpi) of R. solanacearum except for available nitrogen which showed an opposite trend. The qPCR results showed a significant decrease in R. solanacearum population in rhizosphere of K326 (T2) compared to the Hongda (T1) at 21 and 63 dpi than that after 42 dpi. The rhizosphere bacteriome analysis through 16S rRNA amplicon sequencing revealed that rhizosphere bacterial community composition was significantly different between two tobacco cultivars (Hongda and K326) and this effect was more prominent after 63 dpi (93 days after post-transplantation), suggesting that each cultivar recruits a unique set of bacterial communities. There was no obvious difference observed in the rhizosphere bacteriome of CK (K326) and T2 (K326), which might be attributed to the same genetic makeup and inherent resistance of K326 to bacterial wilt infection. Analysis of co-occurrence networks revealed that the microbial network in T1 (Hongda) was more complex than those in T2 (K326) and CK (K326), while the networks in CK and T2 were almost identical. The present research highlights the time-course relationship between environmental factors and rhizosphere bacteriome of tobacco cultivars showing different levels of resistance against R. solanacearum. Conclusively, studying the plant-soil-microbe interaction system in susceptible and resistant tobacco cultivars may enable us to develop effective integrated disease control plans for the healthy production of tobacco crops.


Asunto(s)
Ralstonia solanacearum , Suelo/química , ARN Ribosómico 16S/genética , Bacterias/genética , Nicotiana
2.
Pest Manag Sci ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860543

RESUMEN

BACKGROUND: Bursaphelenchus xylophilus, the causative agent of pine wilt disease (PWD), is an ever-increasing threat to Pinus forests worldwide. This study aimed to develop biological control of PWD by the application of endophytic fungi isolated from healthy pine trees. RESULTS: We successfully isolated a novel endophytic fungal strain 1-24-2 from branches of healthy Pinus massoniana. The culture filtrates (CFs) of strain 1-24-2 exhibited strong nematicidal activity against Bursaphelenchus xylophilus, with a corrected mortality rate of 99.00%. Based on the morphological and molecular characteristics, the isolated strain 1-24-2 was identified as Chaetomium ascotrichoides. In the in-planta assay, pine seedlings (2-years-old) treated with 1-24-2 CFs + pine wood nematode (T2) showed a significant control effect of 80%. A total of 24 toxic compounds were first identified from 1-24-2 CFs through gas chromatography-mass spectrometry (GC-MS) analysis, from which O-methylisourea, 2-chlorobenzothiazole, and 4,5,6-trihydroxy-7-methylphthalide showed robust binding sites at Tyr119 against phosphoethanolamine methyltransferase (PMT) protein of Bursaphelenchus xylophilus by molecular docking approach and could be used as potential compounds for developing effective nematicides. Interestingly, strain 1-24-2 produces toxic volatile organic compounds (VOCs), which disturb the natural development process of B. xylophilus, whose total number decreased by up to 83.32% in the treatment group as compared to control and also reduced Botrytis cinerea growth by up to 71.01%. CONCLUSION: Our results highlight the potential of C. ascotrichoides 1-24-2 as a promising biocontrol agent with solid nematicidal activity against B. xylophilus. This is the first report of C. ascotrichoides isolated from P. massoniana exhibiting strong biocontrol potential against B. xylophilus in the world. © 2024 Society of Chemical Industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA