Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 299(2): C497-505, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20538765

RESUMEN

Glutathione transport into mitochondria is mediated by oxoglutarate (OGC) and dicarboxylate carrier (DIC) in the kidney and liver. However, transport mechanisms in brain mitochondria are unknown. We found that both carriers were expressed in the brain. Using cortical mitochondria incubated with physiological levels of glutathione, we found that butylmalonate, a DIC inhibitor, reduced mitochondrial glutathione to levels similar to those seen in mitochondria incubated without extramitochondrial glutathione (59% of control). In contrast, phenylsuccinate, an OGC inhibitor, had no effect (97% of control). Additional experiments with DIC and OGC short hairpin RNA in neuronal-like PC12 cells resulted in similar findings. Significantly, DIC inhibition resulted in increased reactive oxygen species (ROS) content in and H(2)O(2) release from mitochondria. It also led to decreased membrane potential, increased basal respiration rates, and decreased phosphorus-to-oxygen (P/O) ratios, especially when electron transport was initiated from complex I. Accordingly, we found that DIC inhibition impaired complex I activity, but not those for complexes II and III. This impairment was not associated with dislodgment of complex subunits. These results suggest that DIC is the main glutathione transporter in cortical mitochondria and that DIC-mediated glutathione transport is essential for these mitochondria to maintain ROS homeostasis and normal respiratory functions.


Asunto(s)
Encéfalo/metabolismo , Transportadores de Ácidos Dicarboxílicos/fisiología , Glutatión/metabolismo , Homeostasis/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Animales Recién Nacidos , Transporte Biológico/fisiología , Respiración de la Célula/fisiología , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Células PC12 , Ratas , Ratas Sprague-Dawley
2.
Cell Rep ; 15(8): 1700-14, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27184852

RESUMEN

Inhalation of environmental antigens such as allergens does not always induce inflammation in the respiratory tract. While antigen-presenting cells (APCs), including dendritic cells and macrophages, take up inhaled antigens, the cell-intrinsic molecular mechanisms that prevent an inflammatory response during this process, such as activation of the transcription factor NF-κB, are not well understood. Here, we show that the nuclear receptor PPARγ plays a critical role in blocking NF-κB activation in response to inhaled antigens to preserve immune tolerance. Tolerance induction promoted mitochondrial respiration, generation of H2O2, and suppression of NF-κB activation in WT, but not PPARγ-deficient, APCs. Forced restoration of H2O2 in PPARγ-deficient cells suppressed IκBα degradation and NF-κB activation. Conversely, scavenging reactive oxygen species from mitochondria promoted IκBα degradation with loss of regulatory and promotion of inflammatory T cell responses in vivo. Thus, communication between PPARγ and the mitochondria maintains immune quiescence in the airways.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Peróxido de Hidrógeno/metabolismo , Pulmón/citología , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Animales , Antígeno CD11c/metabolismo , Proliferación Celular , Citocinas/genética , Células Dendríticas/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Tolerancia Inmunológica , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , PPAR gamma/deficiencia , PPAR gamma/metabolismo , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA