RESUMEN
This study reports the reversible solubility switching of a polymer triggered by non-phototoxic visible light. A photochromic polymerizable azobenzene monomer with four methoxy groups at the ortho-position (mAzoA) was synthesized, exhibiting reversible photoisomerization between trans- and cis-states using green (546 nm) and blue light (436 nm). Free radical copolymerization of hydrophilic dimethylacrylamide (DMAAm) with mAzoA produced a light-responsive random copolymer (P(mAzoA-r-DMAAm)) that shows a reversible photochromic reaction to visible light. Optimizing mAzoA content resulted in P(mAzoA10.7-r-DMAAm)3.0 kDa exhibiting LCST-type phase separation in PBS (pH 7.4) with trans- and cis-states at 39.2 °C and 32.9 °C, respectively. The bistable temperature range of 6.3 °C covers 37 °C, suitable for mammalian cell culture. Reversible solubility changes were demonstrated under alternating green and blue light at 37 °C. 1H NMR indicated significant retardation of thermal relaxation from cis- to trans-states, preventing undesired thermal mechanical degradation. Madin Darby Canine Kidney (MDCK) cells adhered to the P(mAzoA-r-DMAAm) hydrogel, confirming its non-cytotoxicity and potential for biocompatible interfaces. This principle is useful for developing hydrogels that can reversibly stimulate cells mechanically or chemically in response to visible light.
RESUMEN
Despite considerable interest in the impact of space travel on human health, the influence of the gravity vector on collective cell migration remains unclear. This is primarily because of the difficulty in inducing collective migration, where cell clusters appear in an inverted position against gravity, without cellular damage. In this study, photoactivatable surfaces were used to overcome this challenge. Photoactivatable surfaces enable the formation of geometry-controlled cellular clusters and the remote induction of cellular migration via photoirradiation, thereby maintaining the cells in the inverted position. Substrate inversion preserved the circularity of cellular clusters compared to cells in the normal upright position, with less leader cell appearance. Furthermore, the inversion of cells against the gravity vector resulted in the remodeling of the cytoskeletal system via the strengthening of external actin bundles. Within the 3D cluster architecture, enhanced accumulation of active myosin was observed in the upper cell-cell junction, with a flattened apical surface. Depending on the gravity vector, attenuating actomyosin activity correlates with an increase in the number of leader cells, indicating the importance of cell contractility in collective migration phenotypes and cytoskeletal remodeling.
RESUMEN
The refraction of fluorescence from the inside of a sample at the surface results in fluctuations in fluorescence computed tomography (CT). We evaluated the influence of the difference in refractive index (RI) between the sample body and the surroundings on fluorescence CT results. The brightest fluorescent point is away from the correct point on the tomograms owing to the refraction. The speculated position is determined as the exact point if the RI ratio ranges between 0.97 and 1.03 by immersing the body in an RI matching liquid. The results can help in experimental settings of fluorescence CT for acquiring three-dimensional positional information.
Asunto(s)
Refractometría , Tomografía , Refracción Ocular , Tomografía Computarizada por Rayos XRESUMEN
Rare-earth-doped nanoparticles (NPs), such as NaGdF4 nanocrystals doped with light-emitting rare earth ions, are promising bimodal probes that allow the integration of over 1000 nm near-infrared (OTN-NIR; NIR-II/III) fluorescence imaging and magnetic resonance imaging (MRI) of live bodies. A precise control of the particle size is the key factor for achieving a high signal-to-noise ratio in both NIR fluorescence and MR images and for regulating their function in the body. In this study, size-controlled NaGdF4:Yb3+, Er3+ NPs prepared by stepwise crystal growth were used for in vivo bimodal imaging. Hexagonal NaGdF4:Yb3+,Er3+ NPs coated with poly(ethylene glycol)-poly(acrylic acid) block copolymer, with hydrodynamic diameters of 15 and 45 nm, were prepared and evaluated as bimodal NPs for OTN-NIR fluorescence imaging and MRI. Their longitudinal (T 1) and transverse (T 2) relaxation rates at the static magnetic field strength of 1.0 T, as well as their cytotoxicity towards NIH3T3 cell lines, were evaluated and compared to study the effect of size. Using these particles, blood vessel visualization was achieved by MRI, with the highest relaxometric ratio (r 1/r 2) of 0.79 reported to date for NaGdF4-based nanoprobes (r 1 = 19.78 mM-1 s-1), and by OTN-NIR fluorescence imaging. The results clearly demonstrate the potential of the size-controlled PEG-modified NaGdF4:Yb3+,Er3+ NPs as powerful 'positive' T 1-weight contrast MRI agents and OTN-NIR fluorophores.
RESUMEN
The labeling technique for cells with over-thousand-nanometer near-infrared (OTN-NIR) fluorescent probes has attracted much attention for in vivo deep imaging for cell tracking and cancer metastasis, because of low scattering and absorption of OTN-NIR light by biological tissues. However, the intracellular behavior following the uptake of the single-walled carbon nanotubes (SWCNTs), an OTN-NIR fluorophore, remains unknown. The aim of this study is to investigate the time-dependent change in OTN-NIR fluorescence images of cultured murine cancer cells (Colon-26) following treatment with a recently developed OTN-NIR fluorescent probe, epoxide-type oxygen-doped SWCNTs (o-SWCNTs). The o-SWCNTs were synthesized by oxygenation of SWCNTs by ozone under ultraviolet irradiation and were dispersed in an aqueous solution of N-(carbonyl-methoxypolyethyleneglycol 2000)-1,2-distearoyl- sn-glycero-3-phosphoethanolamine to prepare biocompatible o-SWCNTs (o-SWCNT-PEG). OTN-NIR fluorescent o-SWCNT-PEG showed an abnormal behavior following cellular uptake. OTN-NIR fluorescence was not observed in the cells after 24 h incubation with the o-SWCNT-PEG, but clearly increased with longer incubation time from three days after the treatment. This result was further confirmed by Raman microscopy, suggesting that OTN-NIR fluorescence intensity was associated with the cellular uptake of the o-SWCNT-PEG. These results suggest that the Colon-26 cells were successfully labeled by the o-SWCNT-PEG that emit OTN-NIR fluorescence. The o-SWCNT-PEG may aggregate in the cells over time, which could favor their internalization. This delayed concentration followed by a long retention of the o-SWCNT-PEG in cells will facilitate further biotechnological applications of the o-SWCNTs to in vivo deep OTN-NIR fluorescent imaging.
Asunto(s)
Colorantes Fluorescentes/química , Nanotubos de Carbono/química , Oxígeno/química , Animales , Línea Celular Tumoral , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/toxicidad , Ratones , Microscopía Fluorescente/métodos , Nanotubos de Carbono/toxicidad , Imagen Óptica/métodos , Oxidación-Reducción , Oxígeno/toxicidad , Ozono/química , Polietilenglicoles/química , Polietilenglicoles/toxicidad , Espectrometría Raman/métodosRESUMEN
Cell migration is an essential cellular activity in various physiological and pathological processes, such as wound healing and cancer metastasis. Therefore, in vitro cell migration assays are important not only for fundamental biological studies but also for evaluating potential drugs that control cell migration activity in medical applications. In this regard, robust control over cell migrating microenvironments is critical for reliable and quantitative analysis as cell migration is highly dependent upon the microenvironments. Here, we developed a facile method for making a commercial glass-bottom 96-well plate photoactivatable for cell adhesion, aiming to develop a versatile and multiplex cell migration assay platform. Cationic poly-d-lysine was adsorbed to the anionic glass surface via electrostatic interactions and, subsequently, functionalized with poly(ethylene glycol) (PEG) bearing a photocleavable reactive group. The initial PEGylated surface is non-cell-adhesive. However, upon near-ultraviolet (UV) irradiation, the photorelease of PEG switches the surface from non-biofouling to cell-adhesive. With this platform, we assayed cell migration in the following procedure: (1) create cell-attaching regions of precise geometries by controlled photoirradiation, (2) seed cells to allow them to attach selectively to the irradiated regions, (3) expose UV light to the remaining PEGylated regions to extend the cell-adhesive area, (4) analyse cell migration using microscopy. Surface modification of the glass surface was characterized by ζ-potential and contact angle measurements. The PEGylated surface showed cell-resistivity and became cell-adhesive upon releasing PEG by near-UV irradiation. The method was applied for parallelly evaluating the effect of model drugs on the migration of epithelial MDCK cells in the multiplexed platform. The dose-response relationship for cytochalasin D treatment on cell migration behavior was successfully evaluated with high reproducibility. Interestingly, the impact of blebbistatin on cell migration was dependent upon the widths of the migrating regions, resulting in both cases of migration acceleration and deceleration. These results clearly demonstrate that the cellular response to certain drugs is highly affected by their migrating geometries. Therefore, the obtained novel photoactivatable 96-well plate serves as a useful high-throughput platform for the identification of drug candidates that have an effect on cell migration behavior.
Asunto(s)
Ensayos de Migración Celular/instrumentación , Animales , Movimiento Celular/efectos de los fármacos , Perros , Evaluación Preclínica de Medicamentos/instrumentación , Células Epiteliales/efectos de los fármacos , Diseño de Equipo , Vidrio/química , Células de Riñón Canino Madin Darby , Polietilenglicoles/química , Polilisina/química , Reproducibilidad de los Resultados , Propiedades de Superficie , Rayos UltravioletaRESUMEN
Micelles have been extensively used in biomedicine as potential carriers of hydrophobic fluorescent dyes. Their small diameters can potentially enable them to evade recognition by the reticuloendothelial system, resulting in prolonged circulation. Nevertheless, their lack of stability in physiological environments limits the imaging utility of micelles. In particular, when a dye sensitive to water, such as IR-1061, is encapsulated in the micelle core, the destabilized structure leads to interactions between water and dye, degrading the fluorescence. In this study, we investigated a method to improve micelle stability utilizing the electrical effect of gadolinium (Gd3+ ) and tetraazacyclododecane tetraacetic acid (DOTA), introduced into the micelles. Three micellar structures, one containing a poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) block copolymer, and two other structures, including PLGA-b-PEG with DOTA or Gd-DOTA introduced at the boundary of PLGA and PEG, were prepared with IR-1061 in the core. Structures that contained DOTA at the border of the PLGA core and PEG shell exhibited much higher fluorescence intensity than probes without DOTA. With Gd3+ ions at the DOTA center, fluorescence stability was enhanced remarkably in physiological environments. Most interesting is the finding that fluorescence is enhanced with increased Gd-DOTA concentrations. In conclusion, we found that overall fluorescence and stability are improved by introducing Gd-DOTA at the boundary of the PLGA core and PEG shell. Improving micelle stability is crucial for further biomedical applications of micellar probes such as bimodal fluorescence and magnetic resonance imaging.
Asunto(s)
Boratos , Compuestos Heterocíclicos , Lactatos , Micelas , Compuestos Organometálicos , Polietilenglicoles , Piranos , Fluorescencia , Polietilenglicoles/química , Poliglactina 910/química , Agua/químicaRESUMEN
In recent years, it has become clear that the cytotoxicity of γ-irradiation of cells is increased under microgravity conditions. However, there has been no study of the effect of the gravity vector direction, rather than the magnitude, on γ-ray-induced cytotoxicity. Therefore, in this study, we inverted cultures of human bronchial epithelium BEAS-2B cells and human lung cancer A549 cells in order to change the gravity vector direction by 180° with respect to the cells and observed the cellular response to radiation in this state. We found that cells in inverted culture showed increased irradiation-induced production of reactive oxygen species and decreased expression of the antioxidant protein thioredoxin-1 compared to cells in normal culture. Furthermore, the DNA damage response was delayed in γ-irradiated cells in inverted culture, and the number of unrepaired DNA sites was increased, compared to irradiated cells in normal culture. γ-Ray-induced cell death and the number of G2-M arrested cells were increased in inverted culture, in accordance with the decreased capacity for DNA repair. Our findings suggest that the gravity vector direction, as well as its magnitude, alters the cellular response to radiation.
RESUMEN
Extracellular vesicles (EVs) from cultured cells or bodily fluids have been demonstrated to show therapeutic value following myocardial infarction. However, challenges in donor variation, EV generation and isolation methods, and material availability have hindered their therapeutic use. Here, we show that human clinical-grade platelet concentrates from a blood establishment can be used to rapidly generate high concentrations of high purity EVs from sero-converted platelet lysate (SCPL-EVs) with minimal processing, using size-exclusion chromatography. Processing removed serum carrier proteins, coagulation factors and complement proteins from the original platelet lysate and the resultant SCPL-EVs carried a range of trophic factors and multiple recognised cardioprotective miRNAs. As such, SCPL-EVs protected rodent and human cardiomyocytes from hypoxia/re-oxygenation injury and stimulated angiogenesis of human cardiac microvessel endothelial cells. In a mouse model of myocardial infarction with reperfusion, SCPL-EV delivery using echo-guided intracavitary percutaneous injection produced large improvements in cardiac function, reduced scar formation and promoted angiogenesis. Since platelet-based biomaterials are already widely used clinically, we believe that this therapy could be rapidly suitable for a human clinical trial.
Asunto(s)
Vesículas Extracelulares , Infarto del Miocardio , Daño por Reperfusión , Ratones , Animales , Humanos , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Miocitos Cardíacos/metabolismo , Daño por Reperfusión/metabolismoRESUMEN
Liquid-liquid phase separation (LLPS) in living cells has received considerable attention in the biomedical research field. This study is the first to report nanoparticle (NP) uptake into LLPS droplets. Fluorescent dye, Nile red loaded polystyrene NPs (NR-PSt NPs) uptake into model LLPS droplets consisting of adenosine triphosphate (ATP) and poly-L-lysine (PLL) was visualized using fluorescence imaging. Fluorescence imaging showed that the LLPS droplets had a quick NP uptake behavior. Furthermore, temperature changes (4-37 °C) significantly affected the NP uptake behavior of the LLPS droplets. Moreover, the NP-incorporated droplets displayed high stability under strong ionic strength conditions (1â M NaCl). ATP measurements displayed that ATP was released from the NP-incorporated droplets, indicating that the weakly negatively charged ATP molecules and strongly negatively charged NPs were exchanged, which resulted in the high stability of the LLPS droplets. These fundamental findings will contribute to the LLPS studies using various NPs.
Asunto(s)
Adenosina Trifosfato , Imagen ÓpticaRESUMEN
Fatty acids play various physiological roles owing to their diverse structural characteristics, such as hydrocarbon chain length (HCL) and degree of saturation (DS). Although the distribution of fatty acids in biological tissues is associated with lipid metabolism, in situ imaging tools are still lacking for HCL and DS. Here, we introduce a framework of near-infrared (1000-1400 nm) hyperspectral label-free imaging with machine learning analysis of the fatty acid HCL and DS distribution in the liver at each pixel, in addition to the previously reported total lipid content. The training data of 16 typical fatty acids were obtained by gas chromatography from liver samples of mice fed with various diets. A two-dimensional mapping of these two parameters was successfully performed. Furthermore, the HCL/DS plot exhibited characteristic clustering among the different diet groups. Visualization of fatty acid distribution would provide insights for revealing the pathophysiological conditions of liver diseases and metabolism.
Asunto(s)
Ácidos Grasos , Imágenes Hiperespectrales , Ratones , Animales , Ácidos Grasos/metabolismo , Hígado/metabolismoRESUMEN
We developed a small MRI/NIR-II probe to target HER2 (tetanucleotide) breast cancer cells. The probe is composed of PLGA-b-PEG micelles encapsulated NIR-II, and Gd-DOTA is conjugated at the border of PLGA/PEG. Herceptin was then conjugated to carboxyl residues of PLGA-b-PEG chains. We examined the influence of carboxyl group ratios on the probe property stability and Herceptin concentration and the binding affinity to HER2(+) cells corresponding to the -COOH ratios. The binding assays demonstrated that the optimal surface ratio of -COOH is 5%, which is less affected by fluorescence reduction and which exhibited the highest antigen-capturing activity.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Trastuzumab/química , Micelas , Imagen por Resonancia MagnéticaRESUMEN
In this study, we developed a novel biodegradable/photothermal polymer micelle-based remote-activation method for a temperature-sensitive ion channel, namely transient receptor potential cation channel subfamily V member 1 (TRPV1). Biodegradable/photothermal polymer micelles containing indocyanine green (ICG-micelles) were prepared using a simple one-pod mixing method. The obtained ICG-micelles showed biocompatibility and biodegradability. Furthermore, under tissue-penetrable near-infrared (NIR) laser irradiation, the ICG-micelles exhibited excellent photothermal effects and NIR emission. Moreover, NIR light-induced remote activation of neurons was successfully performed. ICG-micelles loaded with anti-TRPV1 antibodies effectively bound TRPV1 on cell membranes, and accelerated Ca2+ ion influx into neuronal cells was induced under NIR irradiation. Based on these findings, it is anticipated that the ICG-micelles can serve as a novel noninvasive remote-activation tool for neuronal cells.
Asunto(s)
Hipertermia Inducida , Micelas , Doxorrubicina , Verde de Indocianina , Neuronas , Fototerapia , PolímerosRESUMEN
Multimodal imaging is attractive in biomedical research because it can provide multidimensional information about objects that individual techniques cannot accomplish. In particular, combining over one-thousand-nanometer near-infrared (OTN-NIR) fluorescence and magnetic resonance (MR) imaging is promising for detecting lesions with high sensitivity and structural information. Herein, we describe the development of a bimodal OTN-NIR/MRI probe from gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA) conjugated poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) copolymer (PLGA-b-PEG) micelle encapsulated IR-1061 at two different locations. One configuration contains Gd-DOTA at the end of the PEG of the hydrophilic shell and the other contains Gd-DOTA at the border of PLGA/PEG. The two structures show remarkable differences in fluorescence and R1 relaxation rates in biological environments; the structure with Gd-DOTA at the border of PLGA/PEG exhibits stable fluorescence and T1 signal distribution in live mice. The introduction ratio of Gd-DOTA to PEG is significant for controlling the properties of both structures; a higher Gd-DOTA ratio is preferable for the contrast enhancement effect. We found that Gd-DOTA ratios higher than 10% degraded the fluorescence intensity when Gd-DOTA was bound to the end of PEG. In contrast, the introduction of 70% Gd-DOTA at the border of PLGA/PEG did not exhibit a degraded signal, and the structural stability was enhanced with higher ratios of Gd-DOTA. In conclusion, we confirmed that the location of Gd-DOTA is a crucial factor in designing high-performance probes. The overall properties improve when Gd-DOTA is set on the border of PLGA/PEG. These improvements in the properties by controlling the probe structures are promising for future biomedical applications.
Asunto(s)
Gadolinio , Micelas , Ratones , Animales , Gadolinio/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Fluorescencia , Polietilenglicoles/química , Imagen por Resonancia Magnética/métodosRESUMEN
Over-thousand-nanometer (OTN) near-infrared (NIR) fluorophores are useful for biological deep imaging because of the reduced absorption and scattering of OTN-NIR light in biological tissues. IR-1061, an OTN-NIR fluorescent dye, has a hydrophobic and cationic backbone in its molecular structure, and a non-polar counter ion, BF4 -. Because of its hydrophobicity, IR-1061 needs to be encapsulated in a hydrophobic microenvironment, such as a hydrophobic core of polymer micelles, shielded with a hydrophilic shell for bioimaging applications. Previous studies have shown that the affinity of dyes with hydrophobic core polymers is dependent on the polarity of the core polymer, and that this characteristic is important for designing dye-encapsulated micelles to be used in bioimaging. In this study, the dye-polymer affinity was investigated using hydrophobic polymer films with different chiral structures of poly(lactic acid). IR-1061 showed higher affinity for l- and d-lactic acid copolymers (i.e., poly(dl-lactic acid) (PDLLA)) than to poly(l-lactic acid) (PLLA), as IR-1061 shows less dimerization in PDLLA than in PLLA. In contrast, the stability of IR-1061 in PDLLA was less than that in PLLA due to the influence of hydroxyl groups. Choosing hydrophobic core polymers for their robustness and dye affinity is an effective strategy to prepare OTN-NIR fluorescent probes for in vivo deep imaging.
RESUMEN
Organic molecules that emit near-infrared (NIR) fluorescence at wavelengths above 1000 nm, also known as the second NIR (NIR-II) biological window, are expected to be applied to optical in vivo imaging of deep tissues. The study of molecular states of NIR-II dye and its optical properties are important to yield well-controlled fluorescent probes; however, no such study has been conducted yet. Among the two major absorption peaks of the NIR-II dye, IR-1061, the ratio of the shorter wavelength (900 nm) to the longer one (1060 nm) increased with an increase in the dye concentration in tetrahydrofuran, suggesting that the 900 nm peak is due to the dimer formation of IR-1061. Both absorption peaks are also observed when IR-1061 is encapsulated in the hydrophobic (stearyl) core of micellar nanoparticles (MNPs) of a phospholipid-poly(ethylene glycol). The dimers in the MNP cores decreased via dimer dissociation by enhancing the mobility of the hydrophobic stearyl chains by heat treatment of the dye-encapsulating MNPs at 50-70 °C. The MNPs maintained the dissociated IR-1061 monomers in the core after recooling to 25 °C and showed a higher NIR-II fluorescence intensity than those before heat treatment. This concept will provide better protocols for the preparation of NIR-II fluorescent probes with well-controlled fluorescence properties.
RESUMEN
Multimodal imaging can provide multidimensional information for understanding concealed microstructures or bioprocesses in biological objects. The combination of over-1000 nm near-infrared (OTN-NIR) fluorescence imaging and magnetic resonance (MR) imaging is promising in providing high sensitivity and structural information of lesions. This combination can be facilitated by the development of an imaging probe. The OTN-NIR and MR bimodal fluorescence probes reported to date primarily involve ceramic particles for fluorescence and MRI contrast enhancement effect. In this study, we designed a new bimodal OTN-NIR/MR imaging probe from organic components including an OTN-NIR fluorescent organic dye (IR-1061) encapsulated in the core of a micelle composed of poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) copolymer (PLGA-PEG). For the MRI contrast, gadobutrol (Gd-DOTA) was introduced at the end of the PEG chain at various ratios. Thereafter, the OTN-NIR fluorescence and MR bimodal imaging probes of ca. 20 nm in size were successfully prepared and applied in mouse imaging. The probe exhibited absorption and emission in the OTN-NIR, and T1 contrast enhancement effects on MRI. Moreover, it demonstrated bright OTN-NIR fluorescence and MRI contrast enhancement to depict veins and observe the organs in live mice. The imaging results revealed that the Gd-DOTA introduction ratio is of great importance for controlling the biological response of the probe without reducing the contrast enhancement effect.
Asunto(s)
Imagen por Resonancia Magnética , Micelas , Animales , Boratos , Colorantes Fluorescentes/química , Compuestos Heterocíclicos , Imagen por Resonancia Magnética/métodos , Ratones , Compuestos Organometálicos , PiranosRESUMEN
Polymeric micellar nanoparticles (PNPs) composed of an amphiphilic block copolymer formed from hydrophilic and hydrophobic blocks and over-thousand-nanometer (OTN) near-infrared (NIR) fluorescent dye are promising fluorophores for the dynamic imaging of deep tissue. In this study, we examined the effect of the ratio of hydrophilic/hydrophobic blocks of a block copolymer, poly(ethylene glycol) (PEG)-b-poly(lactide-co-glycolide) (PLGA), on the properties of OTN-PNPs encapsulating IR-1061. OTN-PNPs with a higher molecular weight of PLGA cores showed higher emission and stabilities under physiological conditions. The PEG ratio to PLGA in the block copolymer decreased the stability of OTN-PNPs probably due to the invasion of water molecules into the polymer core. The results show that the in vivo stability and fluorescence properties can be tuned by adjusting the chain lengths of block copolymers and estimated using in vitro assays, which evaluates the brightness retention rate of the OTN-PNPs under physiological conditions.
Asunto(s)
Micelas , Nanopartículas , Fluorescencia , Colorantes Fluorescentes , Nanopartículas/química , Polietilenglicoles/química , Polímeros/químicaRESUMEN
Near-infrared (NIR) fluorescence bioimaging using above to 1000 nm wavelength region is a promising analytical method on visualizing deep tissues. As compared to the short-wavelength ultraviolet (UV: < 400 nm) or visible (VIS: 400 - 700 nm) region, which results in an extremely low absorption or scattering of biomolecules and water in the body, NIR light passes through the tissues. Various fluorescent probes that emit NIR emission in the second (1100 - 1400 nm) or third (1550 - 1800 nm) biological windows have been developed and used for NIR in vivo imaging. Single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth doped ceramic nanoparticles (RED-CNPs), and organic dye-based probes have been proposed by many researchers, and are used to successfully visualize the bloodstream, organs, and disease-affected regions, such as cancer. NIR imaging in the second and third biological windows is an effective analytical method on visualizing deep tissues.
Asunto(s)
Nanopartículas , Nanotubos de Carbono , Puntos Cuánticos , Fluorescencia , Colorantes Fluorescentes , Imagen ÓpticaRESUMEN
We established a new design for a single molecular beacon-conjugated gold nanoparticle, named monoMB-GNP, which showed enhanced fluorescence emission only in the presence of the complementary DNA sequence. MonoMB-GNP also showed no apparent toxicity to NIH/3T3 cells at 1 nM, as determined by the water-soluble tetrazolium assay. Importantly, the lactobionic acid was successfully modified on the surface of monoMB-GNP. The proposed nanoparticle has prospects for use in several applications for targetable molecular beacon strategies.