Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(5): e1010775, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37205638

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1008873.].

2.
Plant Cell Physiol ; 64(10): 1178-1188, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37522618

RESUMEN

Lateral root (LR) formation is an important developmental event for the establishment of the root system in most vascular plants. In Arabidopsis thaliana, the fewer roots (fwr) mutation in the GNOM gene, encoding a guanine nucleotide exchange factor of ADP ribosylation factor that regulates vesicle trafficking, severely inhibits LR formation. Local accumulation of auxin response for LR initiation is severely affected in fwr. To better understand how local accumulation of auxin response for LR initiation is regulated, we identified a mutation, fewer roots suppressor1 (fsp1), that partially restores LR formation in fwr. The gene responsible for fsp1 was identified as SUPERROOT2 (SUR2), encoding CYP83B1 that positions at the metabolic branch point in the biosynthesis of auxin/indole-3-acetic acid (IAA) and indole glucosinolate. The fsp1 mutation increases both endogenous IAA levels and the number of the sites where auxin response locally accumulates prior to LR formation in fwr. SUR2 is expressed in the pericycle of the differentiation zone and in the apical meristem in roots. Time-lapse imaging of the auxin response revealed that local accumulation of auxin response is more stable in fsp1. These results suggest that SUR2/CYP83B1 affects LR founder cell formation at the xylem pole pericycle cells where auxin accumulates. Analysis of the genetic interaction between SUR2 and GNOM indicates the importance of stabilization of local auxin accumulation sites for LR initiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Raíces de Plantas/metabolismo
3.
PLoS Genet ; 16(6): e1008873, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32584819

RESUMEN

The regulation of leaf size has been studied for decades. Enhancement of post-mitotic cell expansion triggered by impaired cell proliferation in Arabidopsis is an important process for leaf size regulation, and is known as compensation. This suggests a key interaction between cell proliferation and cell expansion during leaf development. Several studies have highlighted the impact of this integration mechanism on leaf size determination; however, the molecular basis of compensation remains largely unknown. Previously, we identified extra-small sisters (xs) mutants which can suppress compensated cell enlargement (CCE) via a specific defect in cell expansion within the compensation-exhibiting mutant, angustifolia3 (an3). Here we revealed that one of the xs mutants, namely xs2, can suppress CCE not only in an3 but also in other compensation-exhibiting mutants erecta (er) and fugu2. Molecular cloning of XS2 identified a deleterious mutation in CATION CALCIUM EXCHANGER 4 (CCX4). Phytohormone measurement and expression analysis revealed that xs2 shows hyper activation of the salicylic acid (SA) response pathway, where activation of SA response can suppress CCE in compensation mutants. All together, these results highlight the regulatory connection which coordinates compensation and SA response.


Asunto(s)
Antiportadores/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Aumento de la Célula , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas , Mutación con Pérdida de Función , Tamaño de los Órganos/genética , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal/genética
5.
Plant J ; 90(1): 17-36, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27995695

RESUMEN

Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Deshidratación , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción
6.
Development ; 142(3): 444-53, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25605779

RESUMEN

The root meristem (RM) is a fundamental structure that is responsible for postembryonic root growth. The RM contains the quiescent center (QC), stem cells and frequently dividing meristematic cells, in which the timing and the frequency of cell division are tightly regulated. In Arabidopsis thaliana, several gain-of-function analyses have demonstrated that peptide ligands of the Clavata3 (CLV3)/embryo surrounding region-related (CLE) family are important for maintaining RM size. Here, we demonstrate that a plant U-box E3 ubiquitin ligase, PUB4, is a novel downstream component of CLV3/CLE signaling in the RM. Mutations in PUB4 reduced the inhibitory effect of exogenous CLV3/CLE peptide on root cell proliferation and columella stem cell maintenance. Moreover, pub4 mutants grown without exogenous CLV3/CLE peptide exhibited characteristic phenotypes in the RM, such as enhanced root growth, increased number of cortex/endodermis stem cells and decreased number of columella layers. Our phenotypic and gene expression analyses indicated that PUB4 promotes expression of a cell cycle regulatory gene, CYCD6;1, and regulates formative periclinal asymmetric cell divisions in endodermis and cortex/endodermis initial daughters. These data suggest that PUB4 functions as a global regulator of cell proliferation and the timing of asymmetric cell division that are important for final root architecture.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , División Celular Asimétrica/fisiología , Proliferación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Meristema/citología , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , División Celular Asimétrica/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Clonación Molecular , Ciclinas/metabolismo , Perfilación de la Expresión Génica , Microscopía Confocal , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
7.
Plant Biotechnol J ; 16(2): 615-627, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28730636

RESUMEN

Growth is characterized by the interplay between cell division and cell expansion, two processes that occur separated along the growth zone at the maize leaf. To gain further insight into the transition between cell division and cell expansion, conditions were investigated in which the position of this transition zone was positively or negatively affected. High levels of gibberellic acid (GA) in plants overexpressing the GA biosynthesis gene GA20-OXIDASE (GA20OX-1OE ) shifted the transition zone more distally, whereas mild drought, which is associated with lowered GA biosynthesis, resulted in a more basal positioning. However, the increased levels of GA in the GA20OX-1OE line were insufficient to convey tolerance to the mild drought treatment, indicating that another mechanism in addition to lowered GA levels is restricting growth during drought. Transcriptome analysis with high spatial resolution indicated that mild drought specifically induces a reprogramming of transcriptional regulation in the division zone. 'Leaf Growth Viewer' was developed as an online searchable tool containing the high-resolution data.


Asunto(s)
Sequías , Giberelinas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
J Exp Bot ; 69(7): 1635-1648, 2018 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-29385616

RESUMEN

The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It has been hypothesized that (i) abscisic acid (ABA) represses bud-meristem activity; (ii) perturbation of respiration induces an interplay between ethylene and ABA metabolism, which leads to removal of repression; and (iii) gibberellin (GA)-mediated growth is resumed. The first two hypothesis have been formally supported. The current study examines the third hypothesis regarding the potential involvement of GA in dormancy release. We found that during natural dormancy induction, levels of VvGA3ox, VvGA20ox, and VvGASA2 transcripts and of GA1 were decreased. However, during dormancy release, expression of these genes was enhanced, accompanied by decreased expression of the bud-expressed GA-deactivating VvGA2ox. Despite indications for its positive role during natural dormancy release, GA application had inhibitory effects on bud break. Hydrogen cyanamide up-regulated VvGA2ox and down-regulated VvGA3ox and VvGA20ox expression, reduced GA1 levels, and partially rescued the negative effect of GA. GA had an inhibitory effect only when applied simultaneously with bud-forcing initiation. Given these results, we hypothesize that during initial activation of the dormant bud meristem, the level of GA must be restricted, but after meristem activation an increase in its level serves to enhance primordia regrowth.


Asunto(s)
Giberelinas/metabolismo , Meristema/fisiología , Latencia en las Plantas/fisiología , Vitis/fisiología , Reguladores del Crecimiento de las Plantas
9.
Plant Physiol ; 171(4): 2760-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27255484

RESUMEN

The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6 AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Giberelinas/biosíntesis , Tallos de la Planta/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Tallos de la Planta/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
10.
Plant Cell ; 26(7): 2920-38, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25035403

RESUMEN

Gibberellins (GAs) are essential regulators of plant development, and DELLAs are negative regulators of GA signaling. The mechanism of GA-dependent transcription has been explained by DELLA-mediated titration of transcriptional activators and their release through the degradation of DELLAs in response to GA. However, the effect of GA on genome-wide expression is predominantly repression, suggesting the existence of unknown mechanisms of GA function. In this study, we identified an Arabidopsis thaliana DELLA binding transcription factor, GAI-ASSOCIATED FACTOR1 (GAF1). GAF1 shows high homology to INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS. GA responsiveness was decreased in the double mutant gaf1 idd1, whereas it was enhanced in a GAF1 overexpressor. GAF1 binds to genes that are subject to GA feedback regulation. Furthermore, we found that GAF1 interacts with the corepressor TOPLESS RELATED (TPR) and that DELLAs and TPR act as coactivators and a corepressor of GAF1, respectively. GA converts the GAF1 complex from transcriptional activator to repressor via the degradation of DELLAs. These results indicate that DELLAs turn on or off two sets of GA-regulated genes via dual functions, namely titration and coactivation, providing a mechanism for the integrative regulation of plant growth and GA homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ribonucleasa P/metabolismo , Anticuerpos , Arabidopsis/citología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Expresión Génica , Genes Reporteros , Homeostasis , Mutagénesis Insercional , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Ribonucleasa P/genética , Plantones/citología , Plantones/genética , Plantones/fisiología , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
11.
Plant Cell Physiol ; 57(4): 715-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26971301

RESUMEN

Pre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) grains induces hydrolyzing enzymes such as α-amylase, which considerably decreases wheat product quality. PHS occurs when cool and wet weather conditions before harvest break dormancy and induce grain germination. In this study, we used PHS-tolerant varieties, Gifu-komugi (Gifu) and OS38, to characterize the mechanisms of both dormancy breakage and dormancy maintenance at low temperatures. Physiologically mature Gifu grains exhibited dormancy after imbibition at 20°C, but germinated at 15°C. In contrast, OS38 grains remained dormant even at temperatures as low as 5°C. Embryo half-grains cut out from the dormant Gifu grains germinated by imbibition at 20°C, similar to conventional varieties worldwide. However, OS38 embryo half-grains were still dormant. Hormonome and pharmacological analyses suggested that ABA and gibberellin metabolism are important for temperature-dependent dormancy maintenance and breakage. Imbibition at 15°C decreased ABA levels but increased gibberellin levels in embryos of freshly harvested Gifu grains. Additionally, low temperatures induced expression of the ABA catabolism genes,TaABA8' OH1 and TaABA8' OH2, and the gibberellin biosynthesis gene,TaGA3ox2, in the embryos. However, in embryos of freshly harvested OS38 grains, ABA levels were increased while gibberellin levels were suppressed at 15°C. In these dormant embryos, low temperatures induced the TaNCED ABA biosynthesis genes, but suppressed TaABA8' OH2 and TaGA3ox2.These results show that the regulatory mechanism influencing the expression of ABA and gibberellin metabolism genes may be critical for dormancy maintenance and breakage at low temperatures. Our findings should help improve PHS-resistant wheat breeding programs.


Asunto(s)
Ácido Abscísico/metabolismo , Latencia en las Plantas/fisiología , Proteínas de Plantas/genética , Triticum/fisiología , Ácido Abscísico/genética , Clonación Molecular , Frío , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/fisiología , Triticum/genética , Triticum/crecimiento & desarrollo
12.
Plant Physiol ; 168(3): 1164-78, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25941316

RESUMEN

SUN controls elongated tomato (Solanum lycopersicum) shape early in fruit development through changes in cell number along the different axes of growth. The gene encodes a member of the IQ domain family characterized by a calmodulin binding motif. To gain insights into the role of SUN in regulating organ shape, we characterized genome-wide transcriptional changes and metabolite and hormone accumulation after pollination and fertilization in wild-type and SUN fruit tissues. Pericarp, seed/placenta, and columella tissues were collected at 4, 7, and 10 d post anthesis. Pairwise comparisons between SUN and the wild type identified 3,154 significant differentially expressed genes that cluster in distinct gene regulatory networks. Gene regulatory networks that were enriched for cell division, calcium/transport, lipid/hormone, cell wall, secondary metabolism, and patterning processes contributed to profound shifts in gene expression in the different fruit tissues as a consequence of high expression of SUN. Promoter motif searches identified putative cis-elements recognized by known transcription factors and motifs related to mitotic-specific activator sequences. Hormone levels did not change dramatically, but some metabolite levels were significantly altered, namely participants in glycolysis and the tricarboxylic acid cycle. Also, hormone and primary metabolite networks shifted in SUN compared with wild-type fruit. Our findings imply that SUN indirectly leads to changes in gene expression, most strongly those involved in cell division, cell wall, and patterning-related processes. When evaluating global coregulation in SUN fruit, the main node represented genes involved in calcium-regulated processes, suggesting that SUN and its calmodulin binding domain impact fruit shape through calcium signaling.


Asunto(s)
Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Aminoácidos/metabolismo , Secuencia de Bases , Frutas/genética , Regulación del Desarrollo de la Expresión Génica , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Familia de Multigenes , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Polinización/genética , Análisis de Componente Principal , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Plant Cell Rep ; 35(2): 455-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26601822

RESUMEN

KEY MESSAGE: Auxin and two phytochrome-interacting factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, play crucial roles in the enhancement of hypocotyl elongation in transgenic Arabidopsis thaliana plants that overproduce LOV KELCH PROTEIN2 (LKP2). LOV KELCH PROTEIN2 (LKP2) is a positive regulator of hypocotyl elongation under white light in Arabidopsis thaliana. In this study, using microarray analysis, we compared the gene expression profiles of hypocotyls of wild-type Arabidopsis (Columbia accession), a transgenic line that produces green fluorescent protein (GFP), and two lines that produce GFP-tagged LKP2 (GFP-LKP2). We found that, in GFP-LKP2 hypocotyls, 775 genes were up-regulated, including 36 auxin-responsive genes, such as 27 SMALL AUXIN UP RNA (SAUR) and 6 AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, and 21 genes involved in responses to red or far-red light, including PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5; and 725 genes were down-regulated, including 15 flavonoid biosynthesis genes. Hypocotyls of GFP-LKP2 seedlings, but not cotyledons or roots, contained a higher level of indole-3-acetic acid (IAA) than those of control seedlings. Auxin inhibitors reduced the enhancement of hypocotyl elongation in GFP-LKP2 seedlings by inhibiting the increase in cortical cell number and elongation of the epidermal and cortical cells. The enhancement of hypocotyl elongation was completely suppressed in progeny of the crosses between GFP-LKP2 lines and dominant gain-of-function auxin-resistant mutants (axr2-1 and axr3-1) or loss-of-function mutants pif4, pif5, and pif4 pif5. Our results suggest that the enhancement of hypocotyl elongation in GFP-LKP2 seedlings is due to the elevated level of IAA and to the up-regulated expression of PIF4 and PIF5 in hypocotyls.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Fitocromo/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas
14.
Proc Natl Acad Sci U S A ; 110(5): 1947-52, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319637

RESUMEN

Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Giberelinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oryza/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Hidroxilación , Immunoblotting , Oxigenasas de Función Mixta/genética , Mutación , Oryza/genética , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Sf9
15.
Plant J ; 77(3): 352-66, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24299123

RESUMEN

Indole-3-acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole-3-pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5-(4-chlorophenyl)-4H-1,2,4-triazole-3-thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC-expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1-His suggested that yucasin strongly inhibited YUC1-His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over-expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss-of-function mutant of TAA1, sav3-2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l-kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin-treated sav3-2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Oxigenasas/antagonistas & inhibidores , Reguladores del Crecimiento de las Plantas/metabolismo , Triazoles/farmacología , Zea mays/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Vías Biosintéticas , Cotiledón/efectos de los fármacos , Cotiledón/enzimología , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/química , Indoles/metabolismo , Mutación , Oxigenasas/genética , Fenotipo , Reguladores del Crecimiento de las Plantas/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas , Triazoles/química , Triptófano-Transaminasa/antagonistas & inhibidores , Triptófano-Transaminasa/genética , Zea mays/enzimología , Zea mays/genética , Zea mays/crecimiento & desarrollo
16.
Plant Cell Physiol ; 56(8): 1641-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26076971

RESUMEN

The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Oxigenasas/metabolismo , Fenilacetatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Oxigenasas/genética , Plantas Modificadas Genéticamente , Transducción de Señal , Zea mays/genética , Zea mays/crecimiento & desarrollo
17.
Biochem Biophys Res Commun ; 456(1): 380-4, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25475723

RESUMEN

The cold shock domain (CSD) is the most conserved nucleic acid binding domain and is distributed from bacteria to animals and plants. CSD proteins are RNA chaperones that destabilize RNA secondary structures to regulate stress tolerance and development. AtCSP2 is one of the four CSD proteins in Arabidopsis and is up-regulated in response to cold. Since AtCSP2 negatively regulates freezing tolerance, it was proposed to be a modulator of freezing tolerance during cold acclimation. Here, we examined the function of AtCSP2 in seed germination. We found that AtCSP2-overexpressing lines demonstrated retarded germination as compared with the wild type, with or without stress treatments. The ABA levels in AtCSP2-overexpressing seeds were higher than those in the wild type. In addition, overexpression of AtCSP2 reduced the expression of an ABA catabolic gene (CYP707A2) and gibberellin biosynthesis genes (GA20ox and GA3ox). These results suggest that AtCSP2 negatively regulates seed germination by controlling ABA and GA levels.


Asunto(s)
Ácido Abscísico/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Germinación , Proteínas de Unión al ARN/metabolismo , Semillas/metabolismo , Proteínas y Péptidos de Choque por Frío/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/química , Oxigenasas de Función Mixta/metabolismo , Proteínas de Plantas , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , ARN de Planta/metabolismo
18.
Plant Physiol ; 164(3): 1139-50, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24406794

RESUMEN

Reduction of lignin levels in the forage legume alfalfa (Medicago sativa) by down-regulation of the monolignol biosynthetic enzyme hydroxycinnamoyl coenzyme A:shikimate hydroxycinnamoyl transferase (HCT) results in strongly increased digestibility and processing ability of lignocellulose. However, these modifications are often also associated with dwarfing and other changes in plant growth. Given the importance of nitrogen fixation for legume growth, we evaluated the impact of constitutively targeted lignin modification on the belowground organs (roots and nodules) of alfalfa plants. HCT down-regulated alfalfa plants exhibit a striking reduction in root growth accompanied by an unexpected increase in nodule numbers when grown in the greenhouse or in the field. This phenotype is associated with increased levels of gibberellins and certain flavonoid compounds in roots. Although HCT down-regulation reduced biomass yields in both the greenhouse and field experiments, the impact on the allocation of nitrogen to shoots or roots was minimal. It is unlikely, therefore, that the altered growth phenotype of reduced-lignin alfalfa is a direct result of changes in nodulation or nitrogen fixation efficiency. Furthermore, HCT down-regulation has no measurable effect on carbon allocation to roots in either greenhouse or 3-year field trials.


Asunto(s)
Lignina/metabolismo , Medicago sativa/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Aciltransferasas/metabolismo , Biomasa , Carbono/metabolismo , Regulación hacia Abajo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago sativa/enzimología , Medicago sativa/genética , Medicago sativa/microbiología , Nitrógeno/metabolismo , Fenoles/metabolismo , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Nodulación de la Raíz de la Planta , ARN sin Sentido/metabolismo , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/fisiología , Solubilidad , Transcriptoma/genética
19.
J Exp Bot ; 66(5): 1527-42, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25560179

RESUMEN

In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8'OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy.


Asunto(s)
Ácido Abscísico/metabolismo , Meristema/crecimiento & desarrollo , Latencia en las Plantas , Vitis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/crecimiento & desarrollo
20.
J Exp Bot ; 66(5): 1463-76, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25588745

RESUMEN

Gibberellins (GAs) regulate numerous developmental processes in grapevine (Vitis vinifera) such as rachis elongation, fruit set, and fruitlet abscission. The ability of GA to promote berry enlargement has led to its indispensable use in the sternospermocarpic ('seedless') table grape industry worldwide. However, apart from VvGAI1 (VvDELLA1), which regulates internode elongation and fruitfulness, but not berry size of seeded cultivars, little was known about GA signalling in grapevine. We have identified and characterized two additional DELLAs (VvDELLA2 and VvDELLA3), two GA receptors (VvGID1a and VvGID1b), and two GA-specific F-box proteins (VvSLY1a and VvSLY1b), in cv. Thompson seedless. With the exception of VvDELLA3-VvGID1b, all VvDELLAs interacted with the VvGID1s in a GA-dependent manner in yeast two-hybrid assays. Additionally, expression of these grape genes in corresponding Arabidopsis mutants confirmed their functions in planta. Spatiotemporal analysis of VvDELLAs showed that both VvDELLA1 and VvDELLA2 are abundant in most tissues, except in developing fruit where VvDELLA2 is uniquely expressed at high levels, suggesting a key role in fruit development. Our results further suggest that differential organ responses to exogenous GA depend on the levels of VvDELLA proteins and endogenous bioactive GAs. Understanding this interaction will allow better manipulation of GA signalling in grapevine.


Asunto(s)
Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Vitis/crecimiento & desarrollo , Vitis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Transducción de Señal , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA