Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 23(10)2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332854

RESUMEN

Antioxidant activity is an essential aspect of oxygen-sensitive merchandise and goods, such as food and corresponding packaging, cosmetics, and biomedicine. Technical lignin has not yet been applied as a natural antioxidant, mainly due to the complex heterogeneous structure and polydispersity of lignin. This report presents antioxidant capacity studies completed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The influence of purification on lignin structure and activity was investigated. The purification procedure showed that double-fold selective extraction is the most efficient (confirmed by ultraviolet-visible (UV/Vis), Fourier transform infrared (FTIR), heteronuclear single quantum coherence (HSQC) and 31P nuclear magnetic resonance spectroscopy, size exclusion chromatography, and X-ray diffraction), resulting in fractions of very narrow polydispersity (3.2⁻1.6), up to four distinct absorption bands in UV/Vis spectroscopy. Due to differential scanning calorimetry measurements, the glass transition temperature increased from 123 to 185 °C for the purest fraction. Antioxidant capacity is discussed regarding the biomass source, pulping process, and degree of purification. Lignin obtained from industrial black liquor are compared with beech wood samples: antioxidant activity (DPPH inhibition) of kraft lignin fractions were 62⁻68%, whereas beech and spruce/pine-mixed lignin showed values of 42% and 64%, respectively. Total phenol content (TPC) of the isolated kraft lignin fractions varied between 26 and 35%, whereas beech and spruce/pine lignin were 33% and 34%, respectively. Storage decreased the TPC values but increased the DPPH inhibition.


Asunto(s)
Antioxidantes/farmacología , Lignina/química , Lignina/farmacología , Madera/química , Antioxidantes/química , Biomasa , Rastreo Diferencial de Calorimetría , Calor , Espectroscopía de Resonancia Magnética , Fenoles/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
2.
Molecules ; 23(8)2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30060536

RESUMEN

Renewable resources are gaining increasing interest as a source for environmentally benign biomaterials, such as drug encapsulation/release compounds, and scaffolds for tissue engineering in regenerative medicine. Being the second largest naturally abundant polymer, the interest in lignin valorization for biomedical utilization is rapidly growing. Depending on its resource and isolation procedure, lignin shows specific antioxidant and antimicrobial activity. Today, efforts in research and industry are directed toward lignin utilization as a renewable macromolecular building block for the preparation of polymeric drug encapsulation and scaffold materials. Within the last five years, remarkable progress has been made in isolation, functionalization and modification of lignin and lignin-derived compounds. However, the literature so far mainly focuses lignin-derived fuels, lubricants and resins. The purpose of this review is to summarize the current state of the art and to highlight the most important results in the field of lignin-based materials for potential use in biomedicine (reported in 2014⁻2018). Special focus is placed on lignin-derived nanomaterials for drug encapsulation and release as well as lignin hybrid materials used as scaffolds for guided bone regeneration in stem cell-based therapies.


Asunto(s)
Materiales Biocompatibles/síntesis química , Lignina/química , Materiales Biocompatibles/química , Liberación de Fármacos , Nanoestructuras , Ingeniería de Tejidos , Andamios del Tejido
3.
Macromol Biosci ; : e2400090, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899790

RESUMEN

The autocatalyzed ethanolic organosolv process is gaining increasing attention for the sulfur-free isolation of lignin, which is subsequently used as a renewable substitute for various fossil-based applications. For the first time, the mechanochemical influence of seven different particle sizes of two different biomasses on the respective organosolv lignin structure is examined. Wine pruning (Pinot Noir) and wine pomace (Accent) are used for organosolv process with particle sizes ranging from 2.0-1.6 mm to less than 0.25 mm. As particle size decreases, the weight-average molecular weight increases, while the total phenol content decreases significantly. Additionally, the distribution of the lignin-typical monolignols and relevant substructures, as determined by two-dimensional heteronuclear nuclear magnetic resonance spectra single quantum coherence (HSQC), is observed. The degree of grinding of the biomass has a clear chemical-structural influence on the isolated HG and HGS organosolv lignins. Therefore, it is crucial to understand this influence to apply organosolv lignins in a targeted manner. In the future, particle size specifications in the context of the organosolv process should be expressed in terms of distribution densities rather than in terms of a smaller than specification.

4.
Polymers (Basel) ; 11(4)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979077

RESUMEN

The antiradical and antimicrobial activity of lignin and lignin-based films are both of great interest for applications such as food packaging additives. The polyphenolic structure of lignin in addition to the presence of O-containing functional groups is potentially responsible for these activities. This study used DPPH assays to discuss the antiradical activity of HPMC/lignin and HPMC/lignin/chitosan films. The scavenging activity (SA) of both binary (HPMC/lignin) and ternary (HPMC/lignin/chitosan) systems was affected by the percentage of the added lignin: the 5% addition showed the highest activity and the 30% addition had the lowest. Both scavenging activity and antimicrobial activity are dependent on the biomass source showing the following trend: organosolv of softwood > kraft of softwood > organosolv of grass. Testing the antimicrobial activities of lignins and lignin-containing films showed high antimicrobial activities against Gram-positive and Gram-negative bacteria at 35 °C and at low temperatures (0-7 °C). Purification of kraft lignin has a negative effect on the antimicrobial activity while storage has positive effect. The lignin release in the produced films affected the activity positively and the chitosan addition enhances the activity even more for both Gram-positive and Gram-negative bacteria. Testing the films against spoilage bacteria that grow at low temperatures revealed the activity of the 30% addition on HPMC/L1 film against both B. thermosphacta and P. fluorescens while L5 was active only against B. thermosphacta. In HPMC/lignin/chitosan films, the 5% addition exhibited activity against both B. thermosphacta and P. fluorescens.

5.
J Biotechnol ; 284: 63-67, 2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30048665

RESUMEN

Within this study the mediated detoxification of spent sulphite liquor via laccase from Trametes versicolor was analysed and optimised using an in-situ NMR-spectroscopy method. The enzymatic degradation kinetic was optimised using the degradation rate of aromatic compounds as indirect parameter. Via response surface methodology the impact of the temperature, the pH and the enzyme concentration was analysed and the conditions were optimised focusing on optimal detoxification. The results of the statistical calculation revealed a valid statistical model for the optimal impact on the aromatic degradation with a temperature of 31 °C, a pH of 6 and a laccase concentrations of 179 U g-1 dry matter of spent sulphite liquor. By using these conditions 88.73% of aromatic compounds could be degraded.


Asunto(s)
Lacasa/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Sulfitos/metabolismo , Trametes/enzimología , Concentración de Iones de Hidrógeno , Residuos Industriales , Modelos Estadísticos , Papel , Temperatura
6.
ChemSusChem ; 10(1): 48-52, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27898203

RESUMEN

Wheat straw was pretreated and afterwards enzymatically hydrolyzed using a modified ammonia fiber expansion (AFEX) process under different reaction conditions to produce fermentable sugars. Instead of liquid ammonia, aqueous ammonia (25 % w/v) was used to test its influence on the sugar concentration and yield of the sugars. It is shown that a protein extraction after the pretreatment can distinctly improve the result obtained for the enzymatic hydrolysis. This modified AFEX process using aqueous ammonia represents a simpler and less expensive variant of the AFEX process usually described in literature. Thus, the described process can be used for the primary refining of lignocellulosic feedstocks in the sense of a roadmap for biorefinery.


Asunto(s)
Amoníaco/química , Fermentación , Glicósido Hidrolasas/metabolismo , Lignina/química , Monosacáridos/química , Hidrólisis , Monosacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA