Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(16): 7655-7667, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32248688

RESUMEN

Recently, there have been renewed interests in exploring new catalysts for ammonia synthesis under mild conditions. Electride-based catalysts are among the emerging ones. Ruthenium particles supported on an electride composed of a mixture of calcium and aluminum oxides (C12A7) have attracted great attention for ammonia synthesis due to their facile ability in activating N2 under ambient pressure. However, the exact nature of the reactive hydrogen species and the role of electride support still remain elusive for this catalytic system. In this work, we report for the first time that the surface-adsorbed hydrogen, rather than the hydride encaged in the C12A7 electride, plays a major role in ammonia synthesis over the Ru/C12A7 electride catalyst with the aid of in situ neutron scattering techniques. Combining in situ neutron diffraction, inelastic neutron spectroscopy, density functional theory (DFT) calculation, and temperature-programmed reactions, the results provide direct evidence for not only the presence of encaged hydrides during ammonia synthesis but also the strong thermal and chemical stability of the hydride species in the Ru/C12A7 electride. Steady state isotopic transient kinetic analysis (SSITKA) of ammonia synthesis showed that the coverage of reactive intermediates increased significantly when the Ru particles were promoted by the electride form (coverage up to 84%) of the C12A7 support rather than the oxide form (coverage up to 15%). Such a drastic change in the intermediate coverage on the Ru surface is attributed to the positive role of electride support where the H2 poisoning effect is absent during ammonia synthesis over Ru. The finding of this work has significant implications for understanding catalysis by electride-based materials for ammonia synthesis and hydrogenation reactions in general.

2.
J Am Chem Soc ; 139(4): 1485-1498, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28106388

RESUMEN

The direct and single-step conversion of benzene, ethylene, and a Cu(II) oxidant to styrene using the Rh(I) catalyst (FlDAB)Rh(TFA)(η2-C2H4) [FlDAB = N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA = trifluoroacetate] has been reported to give quantitative yields (with Cu(II) as the limiting reagent) and selectivity combined with turnover numbers >800. This report details mechanistic studies of this catalytic process using a combined experimental and computational approach. Examining catalysis with the complex (FlDAB)Rh(OAc)(η2-C2H4) shows that the reaction rate has a dependence on catalyst concentration between first- and half-order that varies with both temperature and ethylene concentration, a first-order dependence on ethylene concentration with saturation at higher concentrations of ethylene, and a zero-order dependence on the concentration of Cu(II) oxidant. The kinetic isotope effect was found to vary linearly with the order in (FlDAB)Rh(OAc)(η2-C2H4), exhibiting no KIE when [Rh] was in the half-order regime, and a kH/kD value of 6.7(6) when [Rh] was in the first-order regime. From these combined experimental and computational studies, competing pathways, which involve all monomeric Rh intermediates and a binuclear Rh intermediate in the other case, are proposed.

3.
Phys Chem Chem Phys ; 15(29): 12187-96, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23793350

RESUMEN

We report a novel synthesis of nanoparticle Pd-Cu catalysts, containing only trace amounts of Pd, for selective hydrogenation reactions. Pd-Cu nanoparticles were designed based on model single atom alloy (SAA) surfaces, in which individual, isolated Pd atoms act as sites for hydrogen uptake, dissociation, and spillover onto the surrounding Cu surface. Pd-Cu nanoparticles were prepared by addition of trace amounts of Pd (0.18 atomic (at)%) to Cu nanoparticles supported on Al2O3 by galvanic replacement (GR). The catalytic performance of the resulting materials for the partial hydrogenation of phenylacetylene was investigated at ambient temperature in a batch reactor under a head pressure of hydrogen (6.9 bar). The bimetallic Pd-Cu nanoparticles have over an order of magnitude higher activity for phenylacetylene hydrogenation when compared to their monometallic Cu counterpart, while maintaining a high selectivity to styrene over many hours at high conversion. Greater than 94% selectivity to styrene is observed at all times, which is a marked improvement when compared to monometallic Pd catalysts with the same Pd loading, at the same total conversion. X-ray photoelectron spectroscopy and UV-visible spectroscopy measurements confirm the complete uptake and alloying of Pd with Cu by GR. Scanning tunneling microscopy and thermal desorption spectroscopy of model SAA surfaces confirmed the feasibility of hydrogen spillover onto an otherwise inert Cu surface. These model studies addressed a wide range of Pd concentrations related to the bimetallic nanoparticles.

4.
Rev Sci Instrum ; 91(1): 013107, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32012544

RESUMEN

A high-throughput, operando-ready X-ray absorption spectroscopy catalytic reaction cell consisting of 4 parallel reactors was designed to collect X-ray absorption near edge structure and extended fine structure spectra under reaction conditions. The cell is capable of operating at temperatures from ambient conditions up to 773 K and pressures from ambient to 2 MPa in a variety of gas environments. The cell design is mechanically simple, and programmable operation at beamline 8-ID (NSLS-II, Brookhaven National Laboratory) makes it straightforward to use. Reactor tube parts were available as-fabricated from commercial sources, while the heating jacket and cell mounting required custom machining.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA