Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(6): 1859-1875, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470343

RESUMEN

Downstream processing is the bottleneck in the continuous manufacturing of monoclonal antibodies (mAbs). To overcome throughput limitations, two different continuous processes with a novel convective diffusive protein A membrane adsorber (MA) were investigated: the rapid cycling parallel multi-column chromatography (RC-PMCC) process and the rapid cycling simulated moving bed (RC-BioSMB) process. First, breakthrough curve experiments were performed to investigate the influence of the flow rate on the mAb dynamic binding capacity and to calculate the duration of the loading steps. In addition, customized control software was developed for an automated MA exchange in case of pressure increase due to membrane fouling to enable robust, uninterrupted, and continuous processing. Both processes were performed for 4 days with 0.61 g L-1 mAb-containing filtrate and process performance, product purity, productivity, and buffer consumption were compared. The mAb was recovered with a yield of approximately 90% and productivities of 1010 g L-1 d-1 (RC-PMCC) and 574 g L-1 d-1 (RC-BioSMB). At the same time, high removal of process-related impurities was achieved with both processes, whereas the buffer consumption was lower for the RC-BioSMB process. Finally, the attainable productivity for perfusion bioreactors of different sizes with suitable MA sizes was calculated to demonstrate the potential to operate both processes on a manufacturing scale with bioreactor volumes of up to 2000 L.


Asunto(s)
Anticuerpos Monoclonales , Cricetulus , Membranas Artificiales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/química , Adsorción , Células CHO , Reactores Biológicos , Proteína Estafilocócica A/química , Animales , Cromatografía de Afinidad/métodos , Cromatografía de Afinidad/instrumentación
2.
J Chromatogr A ; 1732: 465201, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39079364

RESUMEN

Protein A affinity membrane adsorbers are a promising alternative to resins to intensify the manufacturing of monoclonal antibodies. This study examined the process performance of convective diffusive membrane adsorbers operated in batch and continuous multi-column mode. Therefore, three different processes were compared regarding membrane utilization, productivity, and buffer consumption: the batch process, the rapid cycling parallel multi-column chromatography process, and the rapid cycling simulated moving bed process. The influence of the monoclonal antibody loading concentration (between 0.5 g L-1 and 5.2 g L-1) and the loading flow rate (between 1.25 MV min-1 and 10 MV min-1) on the monoclonal antibody binding behavior of the membrane adsorber were studied with breakthrough curve experiments. The determined breakthrough curves were used to calculate the monoclonal antibody dynamic binding capacity, the duration of the loading steps for each process, and the number of required membrane adsorbers for the continuous processes rapid cycling parallel multi-column chromatography and rapid cycling simulated moving bed. The highest productivity for the batch (176 g L-1 h-1) and rapid cycling parallel multi-column chromatography process (176 g L-1 h-1) was calculated for high monoclonal antibody loading concentrations and low loading flow rates. In contrast, the rapid cycling simulated moving bed process achieved the highest productivity (217 g L-1 h-1) for high monoclonal antibody loading concentrations and loading flow rates. Furthermore, due to the higher membrane utilization, the buffer consumption of the rapid cycling simulated moving bed process (1.1 L g-1) was up to 1.9 times lower than that of the batch or rapid cycling parallel multi-column chromatography operation (2.1 L g-1).

3.
Bioengineering (Basel) ; 10(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38135982

RESUMEN

Monoclonal antibodies are the workhorse of the pharmaceutical industry due to their potential to treat a variety of different diseases while providing high specificity and efficiency. As a consequence, a variety of production processes have been established within the biomanufacturing industry. However, the rapidly increasing demand for therapeutic molecules amid the recent COVID-19 pandemic demonstrated that there still is a clear need to establish novel, highly productive, and flexible production processes. Within this work, we designed a novel discontinuous process by combining two intensification strategies, thus increasing inoculation density and media exchange via a fluidized bed centrifuge, to fulfill the need for a flexible and highly productive production process for therapeutic molecules. To establish this new process, firstly, a small-scale experiment was conducted to verify synergies between both intensification strategies, followed by a process transfer towards the proof-of-concept scale. The combination of these two-process intensification measures revealed overall synergies resulting in decreased process duration (-37%) and strongly enhanced product formation (+116%) in comparison to the not-intensified standard operation. This led to an impressive threefold increase in space-time yield, while only negligible differences in product quality could be observed. Overall, this novel process not only increases the ways to react to emergency situations thanks to its flexibility and possible short development times, but also represents a possible alternative to the current established processes due to high increases in productivity, in comparison to standard fed-batch operations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA