Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2822-2829, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28778485

RESUMEN

To meet its exceptionally high energy demands, the heart relies largely on fatty acid oxidation, which then drives the oxidative phosphorylation system in mitochondria. Each day, this system produces about 6kg of ATP to sustain heart function. Fatty acid oxidation is sometimes associated with high rates of mitochondrial reactive oxygen species (ROS) production. By definition, ROS are singlet electron intermediates formed during the partial reduction of oxygen to water and they include radical and non-radical intermediates like superoxide, hydrogen peroxide and hydroxyl radical. Superoxide can also interact with nitric oxide to produce peroxynitrite that in turn can give rise to other radical or non-radical reactive nitrogen species (RNS) like nitrogen dioxide, dinitrogen trioxide and others. While mitochondrial and cellular functions can be impaired by ROS if they accumulate, under normal physiological conditions ROS are important signaling molecules in the cardiovascular system. A fine balance between ROS production and antioxidant systems, including glutathione redox, is essential in the heart; otherwise the ensuing damage can contribute to pathogenic processes, which can culminate in endothelial dysfunction, atherosclerosis, hypertension, cardiac hypertrophy, arrhythmias, myocardial ischemia/reperfusion damage, and heart failure. Here we provide a succinct review of recent findings.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Estrés Oxidativo/genética , Antioxidantes/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Humanos , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
2.
Can J Diabetes ; 43(1): 67-75.e1, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30146472

RESUMEN

OBJECTIVES: Type 2 diabetes mellitus is a chronic progressive disease that is associated with increased risk for cardiovascular diseases and with impaired mitochondrial metabolism in cardiac and skeletal muscles. Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is associated with significant morbidity and mortality. Type 2 diabetes is also one of the prevalent concomitant diseases in patients with AF. During AF, myocardial energy demand is high due to electrical activity. To date, however, very little is known about the effects of AF on atrial muscle mitochondrial energetics. We hypothesized that preexisting fibrillation or type 2 diabetes impacts atrial mitochondrial energetics and electron transport chain supercomplexes. METHODS: Atrial appendages were collected from patients who had consented and who had and did not have preexisting AF and were undergoing coronary artery bypass graft surgery. Mitochondrial functional analyses were conducted in permeabilized myofibers using high-resolution respirometry. RESULTS: Results show impaired complex I and II function in addition to impaired electron transport chain supercomplex assembly in patients with diabetes and AF compared to patients with diabetes but without AF. There were no differences in mitochondrial content in atrial muscle between the groups. There was a strong trend for increased oxidative damage (protein carbonyls) in patients with diabetes and AF compared to patients with diabetes but without AF. CONCLUSIONS: Overall, findings suggest impaired mitochondrial function in AF and type 2 diabetes.


Asunto(s)
Fibrilación Atrial/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo/fisiología , Adulto , Apéndice Atrial/metabolismo , Apéndice Atrial/cirugía , Fibrilación Atrial/epidemiología , Fibrilación Atrial/cirugía , Respiración de la Célula/fisiología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/cirugía , Femenino , Humanos , Masculino
3.
Theranostics ; 9(19): 5720-5730, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534514

RESUMEN

Decades of work have shown that diabetes increases the risk of heart disease and worsens clinical outcomes after myocardial infarction. Because diabetes is an absolute contraindication to heart transplant, cell therapy is increasingly being explored as a means of improving heart function for these patients with very few other options. Given that hyperglycemia promotes the generation of toxic metabolites, the influence of the key detoxification enzyme glyoxalase 1 (Glo1) on chronic hyperglycemia induced heart explant-derived cell (EDC) dysfunction was investigated. Methods: EDCs were cultured from wild type C57Bl/6 or Glo1 over-expressing transgenic mice 2 months after treatment with the pancreatic beta cell toxin streptozotocin or vehicle. The effects of Glo1 overexpression was evaluated using in vitro and in vivo models of myocardial ischemia. Results: Chronic hyperglycemia reduced overall culture yields and increased the reactive dicarbonyl cell burden within EDCs. These intrinsic cell changes reduced the angiogenic potential and production of pro-healing exosomes while promoting senescence and slowing proliferation. Compared to intra-myocardial injection of normoglycemic cells, chronic hyperglycemia attenuated cell-mediated improvements in myocardial function and reduced the ability of transplanted cells to promote new blood vessel and cardiomyocyte growth. In contrast, Glo1 overexpression decreased oxidative damage while restoring both cell culture yields and EDC-mediated repair of ischemic myocardium. The latter was associated with enhanced production of pro-healing extracellular vesicles by Glo1 cells without altering the pro-healing microRNA cargo within. Conclusions: Chronic hyperglycemia decreases the regenerative performance of EDCs. Overexpression of Glo1 reduces dicarbonyl stress and prevents chronic hyperglycemia-induced dysfunction by rejuvenating the production of pro-healing extracellular vesicles.


Asunto(s)
Complicaciones de la Diabetes , Insuficiencia Cardíaca/enzimología , Hiperglucemia/complicaciones , Lactoilglutatión Liasa/metabolismo , Infarto del Miocardio/enzimología , Animales , Antioxidantes/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Enfermedad Crónica , Vesículas Extracelulares/metabolismo , Insuficiencia Cardíaca/prevención & control , Humanos , Lactoilglutatión Liasa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/etiología , Infarto del Miocardio/prevención & control , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
4.
Redox Biol ; 14: 509-521, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29101900

RESUMEN

Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC) to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies.


Asunto(s)
Metabolismo Energético , Glutarredoxinas/metabolismo , Cardiopatías/metabolismo , Dinámicas Mitocondriales , Acetilcisteína/uso terapéutico , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/prevención & control , Células Cultivadas , Glutarredoxinas/genética , Cardiopatías/genética , Cardiopatías/patología , Cardiopatías/prevención & control , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Oxidación-Reducción , Estrés Oxidativo , Factores Protectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA