Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107197, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508314

RESUMEN

Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1 or MglB2 linked to MglA) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal ß-strand of MglB1 and ß0 of MglA is essential for the optimal GEF activity of MglB. Specific residues of MglB2, which interact with Switch-I of MglA, partially contribute to its GAP activity. Thus, the role of the MglB2 protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.


Asunto(s)
Proteínas Bacterianas , Proteínas Activadoras de GTPasa , Myxococcus xanthus , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Activación Enzimática , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/enzimología , Multimerización de Proteína , Modelos Moleculares , Estructura Cuaternaria de Proteína
2.
PLoS Biol ; 17(9): e3000459, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31560685

RESUMEN

Mutual gliding motility A (MglA), a small Ras-like GTPase; Mutual gliding motility B (MglB), its GTPase activating protein (GAP); and Required for Motility Response Regulator (RomR), a protein that contains a response regulator receiver domain, are major components of a GTPase-dependent biochemical oscillator that drives cell polarity reversals in the bacterium Myxococcus xanthus. We report the crystal structure of a complex of M. xanthus MglA and MglB, which reveals that the C-terminal helix (Ct-helix) from one protomer of the dimeric MglB binds to a pocket distal to the active site of MglA. MglB increases the GTPase activity of MglA by reorientation of key catalytic residues of MglA (a GAP function) combined with allosteric regulation of nucleotide exchange by the Ct-helix (a guanine nucleotide exchange factor [GEF] function). The dual GAP-GEF activities of MglB accelerate the rate of GTP hydrolysis over multiple enzymatic cycles. Consistent with its GAP and GEF activities, MglB interacts with MglA bound to either GTP or GDP. The regulation is essential for cell polarity, because deletion of the Ct-helix causes bipolar localization of MglA, MglB, and RomR, thereby causing reversal defects in M. xanthus. A bioinformatics analysis reveals the presence of Ct-helix in homologues of MglB in other bacterial phyla, suggestive of the prevalence of the allosteric mechanism among other prokaryotic small Ras-like GTPases.


Asunto(s)
Locomoción , Myxococcus xanthus/enzimología , Proteínas ras/metabolismo , Regulación Alostérica , Sitios de Unión , Polaridad Celular , Conformación Proteica
3.
FEBS J ; 288(5): 1565-1585, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32772462

RESUMEN

Two small Ras-like GTPases, MglA and SofG, work in synchrony to drive cell polarity and motility in the soil bacterium, Myxococcus xanthus. While MglA regulates two types of motility in Myxococcus and drives cell polarity reversals, SofG regulates social motility enabled by the type IV pili (T4P) machinery. In order to understand the molecular basis of how multiple GTPases act concertedly, we initiated biochemical studies on SofG. A construct of SofG (SofG∆60 ) was purified as a homogenous monomer and could bind to GDP and GTP. Intrinsic GTP hydrolysis by SofG∆60 was negligible. Earlier work from the laboratory revealed that MglB functions both as a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. Biochemical assays of SofG∆60 established that MglB interacts with GTP-bound SofG∆60 and acts as a GAP for SofG∆60 . Interaction of MglB with SofG∆60 in the GDP-bound conformation was not observed, thereby suggesting that MglB might not act as a GEF for SofG∆60 . The existence of a common GAP for both SofG and MglA could potentially contribute to concerted regulation of their GTPase activities, and mediate crosstalk between the two GTPases involved in motility of M. xanthus. Sequence analysis revealed the features for a SofG-like subclass of prokaryotic small Ras-like GTPases that enable MglB to act as a dual-specificity GAP.


Asunto(s)
Proteínas Bacterianas/química , Fimbrias Bacterianas/genética , GTP Fosfohidrolasas/química , Proteínas Activadoras de GTPasa/química , Factores de Intercambio de Guanina Nucleótido/química , Myxococcus xanthus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Polaridad Celular , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fimbrias Bacterianas/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Modelos Moleculares , Myxococcus xanthus/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
4.
J Mol Biol ; 432(20): 5544-5564, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32750390

RESUMEN

A hallmark of the catalytically essential Walker B motif of P-loop NTPases is the presence of an acidic residue (aspartate/glutamate) for efficient Mg2+ coordination. Although the Walker B motif has been identified in well-studied examples of P-loop NTPases, its identity is ambiguous in many families, for example, in the prokaryotic small Ras-like GTPase family of MglA. MglA, belonging to TRAFAC class of P-loop NTPases, possesses a threonine at the position equivalent to Walker B aspartate in eukaryotic Ras-like GTPases. To resolve the identity of the Walker B residue in MglA, we carried out a comprehensive analysis of Mg2+ coordination on P-loop NTPase structures. Atoms in the octahedral coordination of Mg2+ and their interactions comprise a network including water molecules, Walker A, Walker B and switch motifs of P-loop NTPases. Based on the conserved geometry of Mg2+ coordination, we confirm that a conserved aspartate functions as the Walker B residue of MglA, and validate it through mutagenesis and biochemical characterization. Location of the newly identified aspartate is spatially equivalent to the Walker B residue of the ASCE division of P-loop NTPases. Furthermore, similar to the allosteric regulation of the Walker B aspartate conformation in MglA, we identify protein families in which large conformational changes involving Walker B motif potentially function as allosteric regulators. The study unravels conserved features of Mg2+ coordination among divergent families of P-loop NTPases, especially between ancient Ras-like GTPases and ASCE family of ATPases. The conserved geometric features provide a foundation for design of nucleotide-hydrolyzing enzymes.


Asunto(s)
Dominio AAA/fisiología , Proteínas AAA/metabolismo , GTP Fosfohidrolasas/química , Células Procariotas/metabolismo , Proteínas ras/química , Proteínas AAA/genética , Evolución Molecular , GTP Fosfohidrolasas/genética , Modelos Moleculares , Nucleósido-Trifosfatasa/metabolismo , Conformación Proteica , Proteínas ras/genética
5.
Elife ; 92020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33295875

RESUMEN

This article is dedicated to the memory of Michael G. Rossmann. Dating back to the last universal common ancestor, P-loop NTPases and Rossmanns comprise the most ubiquitous and diverse enzyme lineages. Despite similarities in their overall architecture and phosphate binding motif, a lack of sequence identity and some fundamental structural differences currently designates them as independent emergences. We systematically searched for structure and sequence elements shared by both lineages. We detected homologous segments that span the first ßαß motif of both lineages, including the phosphate binding loop and a conserved aspartate at the tip of ß2. The latter ligates the catalytic metal in P-loop NTPases, while in Rossmanns it binds the nucleotide's ribose moiety. Tubulin, a Rossmann GTPase, demonstrates the potential of the ß2-Asp to take either one of these two roles. While convergence cannot be completely ruled out, we show that both lineages likely emerged from a common ßαß segment that comprises the core of these enzyme families to this very day.


Asunto(s)
Proteínas AAA/metabolismo , Proteínas AAA/química , Proteínas AAA/genética , Sitios de Unión , Evolución Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA