Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 37(17): 5339-5347, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33885307

RESUMEN

The self-assembly of surfactants in aqueous solution can be modulated by the presence of additives including urea, which is a well-known protein denaturant and also present in physiological fluids and agricultural runoff. This study addresses the effects of urea on the structure of micelles formed in water by the fluorinated surfactant perfluoro-n-octanoic acid ammonium salt (PFOA). Analysis of small-angle neutron scattering (SANS) experiments and atomistic molecular dynamics (MD) simulations provide consensus strong evidence for the direct mechanism of urea action on micellization: urea helps solvate the hydrophobic micelle core by localizing at the surface of the core in the place of some water molecules. Consequently, urea decreases electrostatic interactions at the micelle shell, changes the micelle shape from prolate ellipsoid to sphere, and decreases the number of surfactant molecules associating in a micelle. These findings inform the interactions and behavior of surface active per- and polyfluoroalkyl substances (PFAS) released in the aqueous environment and biota.

2.
Phys Chem Chem Phys ; 23(16): 10029-10039, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33870993

RESUMEN

Surface active per- and polyfluoroalkyl substances (PFAS) released in the environment generate great concern in the US and worldwide. The sequestration of PFAS amphiphiles from aqueous media can be limited by their strong tendency to form micelles that plug the pores in the adsorbent material, rendering most of the active surface inaccessible. A joint experimental and simulation approach has been used to investigate the structure of perfluorooctanoate ammonium (PFOA) micelles in aqueous solutions, focusing on the understanding of ethanol addition on PFOA micelle formation and structure. Structurally compact and slightly ellipsoidal in shape, PFOA micelles in pure water become more diffuse with increasing ethanol content, and break into smaller PFOA clusters in aqueous solutions with high ethanol concentration. A transition from a co-surfactant to a co-solvent behavior with the increase of ethanol concentration has been observed by both experiments and simulations, while the latter also provide insight on how to achieve co-solvent conditions with other additives. An improved understanding of how to modulate PFAS surfactant self-assembly in water can inform the fate and transport of PFAS in the environment and the PFAS sequestration from aqueous media.

3.
Int J Mol Sci ; 20(22)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744078

RESUMEN

Fluorinated surfactants are used in a wide range of applications that involve aqueous solvents incorporating various additives. The presence of organic compounds such as urea is expected to affect the self-assembly of fluorinated surfactants, however, very little is known about this. We investigated the effect of urea on the micellization in water of the common fluorinated surfactant ammonium perfluorooctanoate (APFO), and on the structure and microenvironment of the micelles that APFO forms. Addition of urea to aqueous APFO solution decreased the critical micellization concentration (CMC) and increased the counterion dissociation. The observed increase in surface area per APFO headgroup and decrease in packing density at the micelle surface suggest the localization of urea at the micelle surface in a manner that reduces headgroup repulsions. Micropolarity data further support this picture. The results presented here indicate that significant differences exist between urea effects on fluorinated surfactant and on hydrocarbon surfactant micellization in aqueous solution. For example, the CMC of sodium dodecyl sulfate (SDS) increased with urea addition, while the increase in surface area per headgroup and packing density of SDS with urea addition are much lower than those observed for APFO. This study informs fluorinated surfactant fate and transport in the environment, and also applications involving aqueous media in which urea or similar additives are present.


Asunto(s)
Caprilatos/química , Fluorocarburos/química , Micelas , Urea/química , Dodecil Sulfato de Sodio/química , Tensión Superficial , Tensoactivos/química , Viscosidad , Agua/química
4.
Langmuir ; 34(48): 14472-14488, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30398348

RESUMEN

Understanding solid-water(vapor) interfacial systems is relevant for both industrial and academic scenarios for their presence in wide areas ranging from tribology to geochemistry. Using grand canonical Monte Carlo simulations, we have investigated the role of monovalent (lithium, Li+; sodium, Na+; and potassium, K+) and divalent (magnesium, Mg2+; calcium, Ca2+) cations on the structure and adsorption behavior of water on mica surface. The water density adjacent to the surface exhibits (a) oscillations due to hydration of surface cations (interfacial layer), (b) followed by a thick liquidlike layer. The thickness of the interfacial layer is strongly dependent on the hydration shell size and hydration energy of surface ions. Water molecules immediately next to the surface (contact layers) adsorb on ditrigonal (hexagonal) cavities of mica surface and form an ordered structure. The Li+, Na+, Mg2+, and Ca2+ surface ions are coadsorbed with water molecules on the ditrigonal cavities due to their smaller hydration shell. Majority of water molecules in the second contact layer hydrate the surface ions and, together with the rest of the water molecules, form hydrogen bonds among themselves. The structure of the water molecules in the third and subsequent layer is random and more bulk liquidlike, except those molecules that hydrate the surface ions. The adsorption isotherm of water on all ion-exposed mica surface exhibits three regimes: (a) an initial rapid increase in water loading for relative vapor pressure ( p/ p0) ≤0.2 due to hydration of surface ions; (b) followed by a linear increase between p/ p0 = 0.2 and 0.7, where the hydrogen bond formation between the water molecules of the interfacial layer occurs; and (c) exponential growth beyond p/ p0 = 0.7 due to thickening of the liquidlike layer. The water loading on divalent-ion-exposed mica surface is higher compared to the monovalent ions case. Although the divalent ions have higher hydration energy, the fraction of water molecules hydrating the surface ions is less compared to nonhydrating water molecules. We found that ion hydration energy and size of hydration shell play a crucial role in their structure adjacent to mica surface. At lower water loadings, the surface ions form a hydration shell with surface bridging oxygens, whereas at higher water content, the hydration preference is shifted toward mobile water molecules. The detailed understanding obtained from this work will be useful in identifying the role of ions in cloud formation, nanotribological studies, and activities of biological molecules and catalysts.

5.
J Colloid Interface Sci ; 609: 456-468, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34815085

RESUMEN

HYPOTHESIS: Complex fluids comprising polymers and surfactants exhibit interesting properties which depend on the overall composition and solvent quality. The ultimate determinants of the macroscopic properties are the nano-scale association domains. Hence it is important to ascertain the structure and composition of the domains, and how they respond to the overall composition. EXPERIMENTS: The structure and composition of mixed micelles formed in aqueous solution between poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics or Poloxamers) and the ionic surfactant sodium dodecylsulfate (SDS) are determined from an analysis of small-angle neutron scattering (SANS) intensity data obtained at different contrasts. Different polymers and concentrations have been probed. FINDINGS: The SDS + Pluronic mixed micelles include polymer and some water in the micelle core that is formed primarily by alkyl chains. This is different than what was previously reported, but is consistent with a variety of experimental observations. This is the first report on the structure of SDS + Pluronic P123 (EO19PO69EO19) assemblies. The effects on the mixed micelle structure and composition of the surfactant concentration and the polymer hydrophobicity are discussed here in the context of interactions between the different components.


Asunto(s)
Micelas , Tensoactivos , Polímeros , Dispersión del Ángulo Pequeño , Agua
6.
J Hazard Mater ; 428: 128137, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016121

RESUMEN

2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, a.k.a. "GenX", is a surfactant introduced as a safer alternative to replace perfluorooctanoate (PFOA) in the manufacturing of fluorinated polymers, however, GenX is shown to cause adverse health effects similar to, or even worse than, those of the legacy PFOA. With an overarching goal to understand the behavior of GenX molecules in aqueous media, we report here on GenX micelle formation and structure in aqueous solutions, on the basis of results obtained from a combination of experimental techniques such as surface tension, fluorescence, viscosity, and small-angle neutron scattering (SANS), and molecular dynamics (MD) simulations. To our best knowledge, this is the first report on GenX micelles. The critical micelle concentration (CMC) of GenX ammonium salt in water is 175 mM. GenX forms small micelles with association number 6-8 and 10 Å radius. GenX molecules prefer to align along the micelle surface, and the ether oxygen of GenX has very little interaction with and exposure to water. Information on the surfactant and interfacial properties of GenX is crucial, since such properties are manifestations of interactions between GenX molecules and between GenX and water molecules and, in turn, the amphiphilic character of GenX dictates its fate and transport in the aqueous environment, its interactions with various biomolecules, and its binding to adsorbent materials.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Micelas , Tensión Superficial , Tensoactivos , Contaminantes Químicos del Agua/análisis
7.
Polymers (Basel) ; 12(8)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824165

RESUMEN

The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA