Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37652010

RESUMEN

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Asunto(s)
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestructura , Microscopía por Crioelectrón , Canales Iónicos , Potasio/metabolismo , Rhinosporidium/química
2.
Nature ; 615(7952): 535-540, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859551

RESUMEN

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Asunto(s)
Organismos Acuáticos , Procesos Fototróficos , Bombas de Protones , Rodopsinas Microbianas , Organismos Acuáticos/metabolismo , Organismos Acuáticos/efectos de la radiación , Bacterias/metabolismo , Bacterias/efectos de la radiación , Carotenoides/metabolismo , Color , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Procesos Heterotróficos/efectos de la radiación , Luz , Océanos y Mares , Procesos Fototróficos/efectos de la radiación , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Zeaxantinas/metabolismo , Zeaxantinas/efectos de la radiación , Luteína/metabolismo , Luteína/efectos de la radiación , Metagenoma , Lagos
3.
Annu Rev Microbiol ; 75: 427-447, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343014

RESUMEN

Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles.


Asunto(s)
Rodopsina , Rodopsinas Microbianas , Humanos , Rodopsina/química , Rodopsina/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo
4.
Nature ; 574(7776): 132-136, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554965

RESUMEN

Heliorhodopsins (HeRs) are a family of rhodopsins that was recently discovered using functional metagenomics1. They are widely present in bacteria, archaea, algae and algal viruses2,3. Although HeRs have seven predicted transmembrane helices and an all-trans retinal chromophore as in the type-1 (microbial) rhodopsin, they display less than 15% sequence identity with type-1 and type-2 (animal) rhodopsins. HeRs also exhibit the reverse orientation in the membrane compared with the other rhodopsins. Owing to the lack of structural information, little is known about the overall fold and the photoactivation mechanism of HeRs. Here we present the 2.4-Å-resolution structure of HeR from an uncultured Thermoplasmatales archaeon SG8-52-1 (GenBank sequence ID LSSD01000000). Structural and biophysical analyses reveal the similarities and differences between HeRs and type-1 microbial rhodopsins. The overall fold of HeR is similar to that of bacteriorhodopsin. A linear hydrophobic pocket in HeR accommodates a retinal configuration and isomerization as in the type-1 rhodopsin, although most of the residues constituting the pocket are divergent. Hydrophobic residues fill the space in the extracellular half of HeR, preventing the permeation of protons and ions. The structure reveals an unexpected lateral fenestration above the ß-ionone ring of the retinal chromophore, which has a critical role in capturing retinal from environment sources. Our study increases the understanding of the functions of HeRs, and the structural similarity and diversity among the microbial rhodopsins.


Asunto(s)
Rodopsinas Microbianas/química , Thermoplasmales/química , Bacteriorodopsinas/química , Sitios de Unión , Cristalografía por Rayos X , Microscopía de Fuerza Atómica , Modelos Moleculares , Pliegue de Proteína , Multimerización de Proteína , Retinaldehído/química , Rodopsinas Microbianas/ultraestructura
5.
Biochemistry ; 63(7): 843-854, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38458614

RESUMEN

Ligand-triggered activation of G protein-coupled receptors (GPCRs) relies on the phenomenon of loose allosteric coupling, which involves conformational alterations spanning from the extracellular ligand-binding domain to the cytoplasmic region, where interactions with G proteins occur. During the GPCR activation process, several intermediate and equilibrium states orchestrate the movement of the flexible and rigid transmembrane (TM) segments of the GPCR. Monitoring early conformational changes is important in unraveling the structural intricacies of the loose allosteric coupling. Here, we focus on the lumi intermediate formed by thermal relaxation from the initial photointermediate, batho in primate green cone pigment (MG), a light-sensitive GPCR responsible for color vision. Our findings from light-induced Fourier transform infrared difference spectroscopy reveal its similarity with rhodopsin, which mediates twilight vision, specifically involving the flip motion of the ß-ionone ring, the relaxation of the torsional structure of the retinal, and local perturbations in the α-helix upon lumi intermediate formation. Conversely, we observe a hydrogen bond modification specific to MG's protonated carboxylic acid, identifying its origin as Glu1022.53 situated in TM2. The weakening of the hydrogen bond strength at Glu1022.53 during the transition from the batho to the lumi intermediates corresponds to a slight outward movement of TM2. Additionally, within the X-ray crystal structure of the rhodopsin lumi intermediate, we note the relocation of the Met862.53 side chain in TM2, expanding the volume of the retinal binding pocket. Consequently, the position of 2.53 emerges as the early step in the conformational shift toward light-induced activation. Moreover, given the prevalence of IR-insensitive hydrophobic amino acids at position 2.53 in many rhodopsin-like GPCRs, including rhodopsin, the hydrogen bond alteration in the C═O stretching band at Glu1022.53 of MG can be used as a probe for tracing conformational changes during the GPCR activation process.


Asunto(s)
Receptores Acoplados a Proteínas G , Rodopsina , Animales , Rodopsina/química , Ligandos , Espectroscopía Infrarroja por Transformada de Fourier
6.
J Biol Chem ; 299(6): 104726, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37094700

RESUMEN

The position of the counterion in animal rhodopsins plays a crucial role in maintaining visible light sensitivity and facilitating the photoisomerization of their retinal chromophore. The counterion displacement is thought to be closely related to the evolution of rhodopsins, with different positions found in invertebrates and vertebrates. Interestingly, box jellyfish rhodopsin (JelRh) acquired the counterion in transmembrane 2 independently. This is a unique feature, as in most animal rhodopsins, the counterion is found in a different location. In this study, we used Fourier Transform Infrared spectroscopy to examine the structural changes that occur in the early photointermediate state of JelRh. We aimed to determine whether the photochemistry of JelRh is similar to that of other animal rhodopsins by comparing its spectra to those of vertebrate bovine rhodopsin (BovRh) and invertebrate squid rhodopsin (SquRh). We observed that the N-D stretching band of the retinal Schiff base was similar to that of BovRh, indicating the interaction between the Schiff base and the counterion is similar in both rhodopsins, despite their different counterion positions. Furthermore, we found that the chemical structure of the retinal in JelRh is similar to that in BovRh, including the changes in the hydrogen-out-of-plane band that indicates a retinal distortion. Overall, the protein conformational changes induced by the photoisomerization of JelRh yielded spectra that resemble an intermediate between BovRh and SquRh, suggesting a unique spectral property of JelRh, and making it the only animal rhodopsin with a counterion in TM2 and an ability to activate Gs protein.


Asunto(s)
Rodopsina , Bases de Schiff , Animales , Bovinos , Fotoquímica , Rodopsina/química , Bases de Schiff/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Cubomedusas
7.
Artículo en Inglés | MEDLINE | ID: mdl-38886314

RESUMEN

Photoisomerization is a key photochemical reaction in microbial and animal rhodopsins. It is well established that such photoisomerization is highly selective; all-trans to 13-cis, and 11-cis to all-trans forms in microbial and animal rhodopsins, respectively. Nevertheless, unusual photoisomerization pathways have been discovered recently in microbial rhodopsins. In an enzymerhodopsin NeoR, the all-trans chromophore is isomerized into the 7-cis form exclusively, which is stable at room temperature. Although, the 7-cis form is produced by illumination of retinal, formation of the 7-cis form was never reported for a protonated Schiff base of all-trans retinal in solution. Present HPLC analysis of retinal oximes prepared by hydroxylamine reaction revealed that all-trans and 7-cis forms cannot be separated from the syn peaks under the standard HPLC conditions, while it is possible by the analysis of the anti-peaks. Consequently, we found formation of the 7-cis form by the photoreaction of all-trans chromophore in solution, regardless of the protonation state of the Schiff base. Upon light absorption of all-trans protonated retinal Schiff base in solution, excited-state relaxation accompanies double-bond isomerization, producing 7-cis, 9-cis, 11-cis, or 13-cis form. In contrast, specific chromophore-protein interaction enforces selective isomerization into the 13-cis form in many microbial rhodopsins, but into 7-cis in NeoR.

8.
Nature ; 561(7723): 343-348, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30158696

RESUMEN

The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae Guillardia theta, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However, molecular insight into ACR1 is lacking owing to the absence of structural information underlying light-gated anion conductance. Here we present the crystal structure of G. theta ACR1 at 2.9 Å resolution. The structure reveals unusual architectural features that span the extracellular domain, retinal-binding pocket, Schiff-base region, and anion-conduction pathway. Together with electrophysiological and spectroscopic analyses, these findings reveal the fundamental molecular basis of naturally occurring light-gated anion conductance, and provide a framework for designing the next generation of optogenetic tools.


Asunto(s)
Aniones/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Criptófitas/química , Bacteriorodopsinas/química , Sitios de Unión , Channelrhodopsins/efectos de la radiación , Cristalografía por Rayos X , Conductividad Eléctrica , Activación del Canal Iónico/efectos de la radiación , Transporte Iónico/efectos de la radiación , Modelos Moleculares , Optogenética/métodos , Optogenética/tendencias , Retinaldehído/metabolismo , Bases de Schiff/química
9.
Nature ; 558(7711): 595-599, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925949

RESUMEN

Many organisms capture or sense sunlight using rhodopsin pigments1,2, which are integral membrane proteins that bind retinal chromophores. Rhodopsins comprise two distinct protein families 1 , type-1 (microbial rhodopsins) and type-2 (animal rhodopsins). The two families share similar topologies and contain seven transmembrane helices that form a pocket in which retinal is linked covalently as a protonated Schiff base to a lysine at the seventh transmembrane helix2,3. Type-1 and type-2 rhodopsins show little or no sequence similarity to each other, as a consequence of extensive divergence from a common ancestor or convergent evolution of similar structures 1 . Here we report a previously unknown and diverse family of rhodopsins-which we term the heliorhodopsins-that we identified using functional metagenomics and that are distantly related to type-1 rhodopsins. Heliorhodopsins are embedded in the membrane with their N termini facing the cell cytoplasm, an orientation that is opposite to that of type-1 or type-2 rhodopsins. Heliorhodopsins show photocycles that are longer than one second, which is suggestive of light-sensory activity. Heliorhodopsin photocycles accompany retinal isomerization and proton transfer, as in type-1 and type-2 rhodopsins, but protons are never released from the protein, even transiently. Heliorhodopsins are abundant and distributed globally; we detected them in Archaea, Bacteria, Eukarya and their viruses. Our findings reveal a previously unknown family of light-sensing rhodopsins that are widespread in the microbial world.


Asunto(s)
Metagenómica , Rodopsina/análisis , Rodopsina/clasificación , Secuencia de Aminoácidos , Eucariontes/química , Evolución Molecular , Rodopsina/química , Rodopsina/efectos de la radiación , Rodopsinas Microbianas/análisis , Rodopsinas Microbianas/química , Rodopsinas Microbianas/clasificación , Rodopsinas Microbianas/efectos de la radiación
10.
Nature ; 561(7723): 349-354, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30158697

RESUMEN

Both designed and natural anion-conducting channelrhodopsins (dACRs and nACRs, respectively) have been widely applied in optogenetics (enabling selective inhibition of target-cell activity during animal behaviour studies), but each class exhibits performance limitations, underscoring trade-offs in channel structure-function relationships. Therefore, molecular and structural insights into dACRs and nACRs will be critical not only for understanding the fundamental mechanisms of these light-gated anion channels, but also to create next-generation optogenetic tools. Here we report crystal structures of the dACR iC++, along with spectroscopic, electrophysiological and computational analyses that provide unexpected insights into pH dependence, substrate recognition, channel gating and ion selectivity of both dACRs and nACRs. These results enabled us to create an anion-conducting channelrhodopsin integrating the key features of large photocurrent and fast kinetics alongside exclusive anion selectivity.


Asunto(s)
Aniones/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Activación del Canal Iónico , Optogenética/métodos , Animales , Caenorhabditis elegans , Células Cultivadas , Channelrhodopsins/genética , Channelrhodopsins/efectos de la radiación , Cristalografía por Rayos X , Electrofisiología , Femenino , Células HEK293 , Hipocampo/citología , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/efectos de la radiación , Transporte Iónico/efectos de la radiación , Cinética , Masculino , Ratones , Modelos Moleculares , Neuronas/metabolismo , Especificidad por Sustrato
11.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33790007

RESUMEN

Schizorhodopsins (SzRs), a new rhodopsin family identified in Asgard archaea, are phylogenetically located at an intermediate position between type-1 microbial rhodopsins and heliorhodopsins. SzRs work as light-driven inward H+ pumps as xenorhodopsins in bacteria. Although E81 plays an essential role in inward H+ release, the H+ is not metastably trapped in such a putative H+ acceptor, unlike the other H+ pumps. It remains elusive why SzR exhibits different kinetic behaviors in H+ release. Here, we report the crystal structure of SzR AM_5_00977 at 2.1 Å resolution. The SzR structure superimposes well on that of bacteriorhodopsin rather than heliorhodopsin, suggesting that SzRs are classified with type-1 rhodopsins. The structure-based mutagenesis study demonstrated that the residues N100 and V103 around the ß-ionone ring are essential for color tuning in SzRs. The cytoplasmic parts of transmembrane helices 2, 6, and 7 are shorter than those in the other microbial rhodopsins, and thus E81 is located near the cytosol and easily exposed to the solvent by light-induced structural change. We propose a model of untrapped inward H+ release; H+ is released through the water-mediated transport network from the retinal Schiff base to the cytosol by the side of E81. Moreover, most residues on the H+ transport pathway are not conserved between SzRs and xenorhodopsins, suggesting that they have entirely different inward H+ release mechanisms.


Asunto(s)
Bombas de Protones/química , Rodopsinas Microbianas/química , Sitios de Unión , Escherichia coli , Conformación Proteica
12.
Biochemistry ; 62(13): 2013-2020, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37352141

RESUMEN

Function of animal and microbial rhodopsins starts by light absorption of the retinal chromophore. The absorption maximum wavelength (λmax) of rhodopsins is determined by the energy gap between the electronically ground (S0) and first excited (S1) state of the retinal chromophore, and the color tuning mechanism is one of the central topics in rhodopsin research. "Color switches", color-determining residues, are red- and blue-shifting amino acids at the same position in two rhodopsins, whose exchange causes spectral blue- and red-shifts, respectively, in each rhodopsin. As mutation easily destroys elaborate chromophore-protein interactions, the known color switches in microbial rhodopsins are limited; the L/Q switch in C-helix (TM3), the A/TS switch in G-helix (TM7), and the G/P switch in F-helix (TM6). Here, we report a novel color switch of microbial rhodopsins, which is located in D-helix (TM4). In this color switch, the red- and blue-shifting amino acids are Asn (N) and Leu (L)/Ile (I), respectively. As Asn and Leu/Ile are polar and nonpolar amino acids, respectively, and the position is located near the ß-ionone ring, the N/LI switch matches the general rule of color tuning by polarity. The N/LI switch is also useful for optogenetics, as many ion-transporting rhodopsins contain blue-shifting amino acids, such as L and I, at that position.


Asunto(s)
Rodopsina , Rodopsinas Microbianas , Animales , Rodopsina/química , Rodopsinas Microbianas/química , Mutación , Aminoácidos/genética , Color
13.
Biochemistry ; 62(8): 1347-1359, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37001008

RESUMEN

Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O-D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins.


Asunto(s)
Rodopsina , Rodopsinas Microbianas , Animales , Bovinos , Rodopsina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua/química , Hidrógeno , Bases de Schiff/química
14.
Phys Chem Chem Phys ; 25(4): 3535-3543, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36637167

RESUMEN

Heliorhodopsins (HeRs), a recently discovered family of rhodopsins, have an inverted membrane topology compared to animal and microbial rhodopsins. The slow photocycle of HeRs suggests a light-sensor function, although the actual function remains unknown. Although HeRs exhibit no specific binding of monovalent cations or anions, recent ATR-FTIR spectroscopy studies have demonstrated the binding of Zn2+ to HeR from Thermoplasmatales archaeon (TaHeR) and 48C12. Even though ion-specific FTIR spectra were observed for many divalent cations, only helical structural perturbations were observed for Zn2+-binding, suggesting a possible modification of the HeR function by Zn2+. The present study shows that Zn2+-binding lowers the thermal stability of TaHeR, and slows back proton transfer to the retinal Schiff base (M decay) during its photocycle. Zn2+-binding was similarly observed for a TaHeR opsin that lacks the retinal chromophore. We then studied the Zn2+-binding site by means of the ATR-FTIR spectroscopy of site-directed mutants. Among five and four mutants of His and Asp/Glu, respectively, only E150Q exhibited a completely different spectral feature of the α-helix (amide-I) in ATR-FTIR spectroscopy, suggesting that E150 is responsible for Zn2+-binding. Molecular dynamics (MD) simulations built a coordination structure of Zn2+-bound TaHeR, where E150 and protein bound water molecules participate in direct coordination. It was concluded that the specific binding site of Zn2+ is located at the cytoplasmic side of TaHeR, and that Zn2+-binding affects the structure and structural dynamics, possibly modifying the unknown function of TaHeR.


Asunto(s)
Protones , Rodopsinas Microbianas , Rodopsinas Microbianas/química , Sitios de Unión , Zinc
15.
Biochemistry ; 61(23): 2698-2708, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399519

RESUMEN

The proton transfer reaction belongs to one of the key triggers for the functional expression of membrane proteins. Rod and cone opsins are light-sensitive G-protein-coupled receptors (GPCRs) that undergo the cis-trans isomerization of the retinal chromophore in response to light. The isomerization event initiates a conformational change in the opsin protein moiety, which propagates the downstream effector signaling. The final step of receptor activation is the deprotonation of the retinal Schiff base, a proton transfer reaction which has been believed to be identical among the cone opsins. Here, we report an unexpected proton transfer reaction occurring in the early photoreaction process of primate blue-sensitive pigment (MB). By using low-temperature UV-visible spectroscopy, we found that the Lumi intermediate of MB formed in transition from the BL intermediate shows an absorption maximum in the UV region, indicating the deprotonation of the retinal Schiff base. Comparison of the light-induced difference FTIR spectra of Batho, BL, and Lumi showed significant α-helical backbone C=O stretching and protonated carboxylate C=O stretching vibrations only in the Lumi intermediate. The transition from BL to Lumi thus involves dramatic changes in protein environment with a proton transfer reaction between the Schiff base and the counterion resulting in an absorption maximum in the UV region.


Asunto(s)
Opsinas de los Conos , Pigmentos Retinianos , Animales , Pigmentos Retinianos/química , Protones , Bases de Schiff/química , Primates/metabolismo , Retinaldehído/química , Rodopsina/química
16.
Biochemistry ; 61(18): 1936-1944, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36007110

RESUMEN

Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria, and thousands of PRs are classified as blue-absorbing PRs (BPR; λmax ∼ 490 nm) and green-absorbing PRs (GPR; λmax ∼ 525 nm). We previously converted BPR into GPR using an anomalous pH effect, which was achieved by an irreversible process at around pH 2. Recent size-exclusion chromatography (SEC) and atomic force microscopy (AFM) analyses of BPR from Vibrio califitulae (VcBPR) revealed the anomalous pH effect owing to the irreversible transition from pentamer to monomer. Different pKa values of the Schiff base counterion between pentamer and monomer lead to different colors at the same pH. Here, we incorporate systematic mutation into VcBPR and examine the anomalous pH effect. The anomalous pH effect was observed for the mutants of key residues near the retinal chromophore such as D76N, D206N, and Q84L, indicating that the Schiff base counterions and the L/Q switch do not affect the irreversible transition from pentamer to monomer at pH ∼ 2. We then focus on the two specific interactions at the intermonomer interface in a pentamer, E29/R30/D31 and W13/H54. Single mutants such as E29Q, R30A, W13A, and H54A and the wild type (WT) exhibited an anomalous pH effect. In contrast, the anomalous pH effect was lost for E29Q/H54A, R30A/H54A, and W13A/E29Q. Size-exclusion chromatography (SEC) and atomic force microscopy (AFM) measurements showed monomer forms in the original states of the double mutants, being a clear contrast to the pentamer forms of all single mutants in the original states. It was concluded that the pentamer structure of VcBPR was stabilized by an electrostatic interaction in the E29/R30/D31 region and a hydrogen-bonding interaction in the W13/H54 region, which was disrupted at pH 2 and converted into monomers.


Asunto(s)
Rodopsina , Bases de Schiff , Hidrógeno , Concentración de Iones de Hidrógeno , Bombas de Protones , Rodopsina/química , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Bases de Schiff/química , Sulfonamidas
17.
Metab Eng ; 72: 227-236, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35346842

RESUMEN

In microbial fermentative production, ATP regeneration, while crucial for cellular processes, conflicts with efficient target chemical production because ATP regeneration exhausts essential carbon sources also required for target chemical biosynthesis. To wrestle with this dilemma, we harnessed the power of microbial rhodopsins with light-driven proton pumping activity to supplement with ATP, thereby facilitating the bioproduction of various chemicals. We first demonstrated a photo-driven ATP supply and redistribution of metabolic carbon flows to target chemical synthesis by installing already-known delta rhodopsin (dR) in Escherichia coli. In addition, we identified novel rhodopsins with higher proton pumping activities than dR, and created an engineered cell for in vivo self-supply of the rhodopsin-activator, all-trans-retinal. Our concept exploiting the light-powering ATP supplier offers a potential increase in carbon use efficiency for microbial productions through metabolic reprogramming.


Asunto(s)
Bombas de Protones , Rodopsina , Adenosina Trifosfato/genética , Carbono/metabolismo , Luz , Optogenética , Bombas de Protones/química , Bombas de Protones/genética , Bombas de Protones/metabolismo , Protones , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo , Rodopsinas Microbianas/genética
18.
Angew Chem Int Ed Engl ; 61(33): e202203149, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35749139

RESUMEN

Recent discoveries of light-driven inward proton-pumping rhodopsins have opened new avenues to exploring the mechanism of unidirectional transport because these proteins transport protons in the opposite direction to conventional proton-pumping rhodopsins, despite their similar protein structure and membrane topology. Schizorhodopsin (SzR) is a newly discovered rhodopsin family of light-driven inward proton pumps. Here, we report time-resolved resonance Raman spectra showing that cis-trans thermal reisomerization precedes reprotonation at the Schiff base of the retinal chromophore in the photocycle of SzR AM_5_00977. This sequence has not been observed for the photocycles of conventional proton-pumping rhodopsins, in which reisomerization follows reprotonation, and thus provides insights into the mechanism of proton uptake to the chromophore during inward proton pumping. The present findings are expected to contribute to controlling the direction of proton transport in engineered proteins.


Asunto(s)
Bombas de Protones , Protones , Transporte Iónico , Bombas de Protones/química , Rodopsina/química , Bases de Schiff
19.
Angew Chem Int Ed Engl ; 61(2): e202111930, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34670002

RESUMEN

All-trans to 13-cis photoisomerization of the protonated retinal Schiff base (PRSB) chromophore is the primary step that triggers various biological functions of microbial rhodopsins. While this ultrafast primary process has been extensively studied, it has been recognized that the relevant excited-state relaxation dynamics differ significantly from one rhodopsin to another. To elucidate the origin of the complicated ultrafast dynamics of the primary process in microbial rhodopsins, we studied the excited-state dynamics of proteorhodopsin, its D97N mutant, and bacteriorhodopsin by femtosecond time-resolved absorption (TA) spectroscopy in a wide pH range. The TA data showed that their excited-state relaxation dynamics drastically change when pH approaches the pKa of the counterion residue of the PRSB chromophore in the ground state. This result reveals that the varied excited-state relaxation dynamics in different rhodopsins mainly originate from the difference of the ground-state heterogeneity (i.e., protonation/deprotonation of the PRSB counterion).


Asunto(s)
Rodopsinas Microbianas
20.
Biochemistry ; 60(41): 3050-3057, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34601881

RESUMEN

A transmembrane proton gradient is generated and maintained by proton pumps in a cell. Metagenomics studies have recently identified a new category of rhodopsin intermediates between type-1 rhodopsins and heliorhodopsins, named schizorhodopsins (SzRs). SzRs are light-driven inward proton pumps. Comprehensive resonance Raman measurements were conducted to characterize the structure of the retinal chromophore in the unphotolyzed state of four SzRs. The spectra of all four SzRs show that the retinal chromophore is in the all-trans and 15-anti configuration and that the Schiff base is protonated. The polyene chain is planar in the center of the retinal chromophore and is twisted in the vicinity of the protonated Schiff base. The protonated Schiff base in the SzRs forms a stronger hydrogen bond than that in outward proton-pumping rhodopsins. We determined that the hydrogen-bonding partner of the protonated Schiff base is not a water molecule but an amino acid residue, presumably an Asp residue in helix G. The present observations provide valuable insights into the inward proton-pumping mechanism of SzRs.


Asunto(s)
Proteínas Arqueales/química , Polienos/química , Bombas de Protones/química , Rodopsinas Microbianas/química , Bases de Schiff/química , Archaea/química , Enlace de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA