RESUMEN
The complexity and heterogeneity of neuroimaging findings in individuals with autism spectrum disorder has suggested that many of the underlying alterations are subtle and involve many brain regions and networks. The ability to account for multivariate brain features and identify neuroimaging measures that can be used to characterize individual variation have thus become increasingly important for interpreting and understanding the neurobiological mechanisms of autism. In the present study, we utilize the Mahalanobis distance, a multidimensional counterpart of the Euclidean distance, as an informative index to characterize individual brain variation and deviation in autism. Longitudinal diffusion tensor imaging data from 149 participants (92 diagnosed with autism spectrum disorder and 57 typically developing controls) between 3.1 and 36.83 years of age were acquired over a roughly 10-year period and used to construct the Mahalanobis distance from regional measures of white matter microstructure. Mahalanobis distances were significantly greater and more variable in the autistic individuals as compared to control participants, demonstrating increased atypicalities and variation in the group of individuals diagnosed with autism spectrum disorder. Distributions of multivariate measures were also found to provide greater discrimination and more sensitive delineation between autistic and typically developing individuals than conventional univariate measures, while also being significantly associated with observed traits of the autism group. These results help substantiate autism as a truly heterogeneous neurodevelopmental disorder, while also suggesting that collectively considering neuroimaging measures from multiple brain regions provides improved insight into the diversity of brain measures in autism that is not observed when considering the same regions separately. Distinguishing multidimensional brain relationships may thus be informative for identifying neuroimaging-based phenotypes, as well as help elucidate underlying neural mechanisms of brain variation in autism spectrum disorders.
Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Anisotropía , Niño , Preescolar , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Masculino , Adulto JovenRESUMEN
Natural killer cells (NK cells) are a subset of peripheral blood lymphocytes that mediate non-major histocompatibility complex-restricted cytotoxicity of foreign target cells. The "gold standard" assay for NK cell activity has been the chromium release assay. This method is not easily performed in the clinical laboratory because of difficulties with disposal of radioactive and hazardous materials, short reagent half-lives, expense, and difficulties with assay standardization. We describe a flow cytometric assay for the clinical measurement of NK cell activity. This study compared the chromium release assay and the flow cytometric assay by using clinically relevant specimens. There were no significant differences between the two assays in the measurement of lytic activity for 17 peripheral blood specimens or in reproducibility in repeated samplings of healthy individuals. We also established a normal range of values for NK activity in healthy adults and identified a small cluster of individuals who have exceptionally high or low levels of NK activity. The flow cytometric assay was validated by testing specimens from subjects expected to have abnormally low levels of NK activity (pregnant women) and specimens from healthy individuals in whom the activity of NK cells was enhanced by exposure to interleukin-2 or alpha interferon. Treatment with these agents was associated with a significant increase in NK activity. These results confirm and extend those of others, showing that the flow cytometric assay is a viable alternative to the chromium release assay for measuring NK cell activity.