Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Wound Repair Regen ; 28(4): 493-505, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32428978

RESUMEN

Nonhealing wounds possess elevated numbers of pro-inflammatory M1 macrophages, which fail to transition to anti-inflammatory M2 phenotypes that promote healing. Hemoglobin (Hb) and haptoglobin (Hp) proteins, when complexed (Hb-Hp), can elicit M2-like macrophages through the heme oxygenase-1 (HO-1) pathway. Despite the fact that nonhealing wounds are chronically inflamed, previous studies have focused on non-inflammatory systems, and do not thoroughly compare the effects of complexed vs individual proteins. We aimed to investigate the effect of Hb/Hp treatments on macrophage phenotype in an inflammatory, lipopolysaccharide (LPS)-stimulated environment, similar to chronic wounds. Human M1 macrophages were cultured in vitro and stimulated with LPS. Concurrently, Hp, Hb, or Hb-Hp complexes were delivered. The next day, 27 proteins related to inflammation were measured in the supernatants. Hp treatment decreased a majority of inflammatory factors, Hb increased many, and Hb-Hp had intermediate trends, indicating that Hp attenuated overall inflammation to the greatest extent. From this data, Ingenuity Pathway Analysis software identified high motility group box 1 (HMGB1) as a key canonical pathway-strongly down-regulated from Hp, strongly up-regulated from Hb, and slightly activated from Hb-Hp. HMGB1 measurements in macrophage supernatants confirmed this trend. In vivo results in diabetic mice with biopsy punch wounds demonstrated accelerated wound closure with Hp treatment, and delayed wound closure with Hb treatment. This work specifically studied Hb/Hp effects on macrophages in a highly inflammatory environment relevant to chronic wound healing. Results show that Hp-and not Hb-Hp, which is known to be superior in noninflammatory conditions-reduces inflammation in LPS-stimulated macrophages, and HMGB1 signaling is also implicated. Overall, Hp treatment on M1 macrophages in vitro reduced the inflammatory secretion profile, and also exhibited benefits in in silico and in vivo wound-healing models.


Asunto(s)
Proteína HMGB1/efectos de los fármacos , Haptoglobinas/farmacología , Hemoglobinas/farmacología , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Diabetes Mellitus , Proteína HMGB1/metabolismo , Hemo-Oxigenasa 1 , Humanos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Ratones Obesos , Receptores de Superficie Celular/metabolismo , Transducción de Señal
2.
Adv Wound Care (New Rochelle) ; 12(5): 241-255, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-34779253

RESUMEN

Objective: Chronic skin wounds are one of the most devastating complications in diabetic patients due to the formation of advanced glycation end-products (AGEs) resulting from nonenzymatic glycation of proteins and lipids in hyperglycemia. AGEs, upon binding their receptors (RAGEs), trigger proinflammatory signals that impair wound healing in diabetes and contribute to the pathology of chronic skin wounds. Approach: We previously developed a recombinant fusion protein containing the binding domain of RAGE (vRAGE) linked to elastin-like polypeptides (ELPs) that acts as a competitive inhibitor of AGEs, and another ELP fusion protein containing stromal cell-derived factor 1 (SDF1) that promotes revascularization. In this study, we report the effects of protein coacervates incorporating both vRAGE-ELP and SDF1-ELP on wound healing in an in vitro diabetes-mimicking cell culture system, and in in vivo in full-thickness wounds on diabetic mice. Results: The combination of vRAGE-ELP and SDF1-ELP increased cell metabolic activity in AGE-stimulated endothelial cells, promoted in vitro tube formation and accelerated healing in an in vitro cell migration assay. When used in a single topical application on full-thickness excisional skin wounds in diabetic mice, wound closure in the combination groups reached almost 100% on postwounding day 35, compared to 62% and 85% on the same days in animals treated with fibrin gel control and vehicle control consisting of ELP alone. Innovation: To our knowledge, this is the first study that attempts to reverse the AGE-RAGE-mediated signaling as well as to promote cell proliferation and vascularization in one single treatment. Conclusion: The codelivery of vRAGE-ELP and SDF1-ELP has potential for the treatment of diabetic wounds.


Asunto(s)
Diabetes Mellitus Experimental , Elastina , Ratones , Animales , Elastina/química , Células Endoteliales/metabolismo , Péptidos , Proteínas Recombinantes , Productos Finales de Glicación Avanzada
3.
Adv Wound Care (New Rochelle) ; 10(5): 221-233, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32487014

RESUMEN

Significance: Chronic wounds are one of the major burdens of the U.S. health care system with an annual cost of $31.7 billion and affecting an estimated 2.4-4.5 million people. Several underlying molecular and cellular pathophysiological mechanisms, including poor vascularization, excessive extracellular matrix (ECM) degradation by proteases, decreased growth factor activity, and bacterial infection can lead to chronic wounds. More effective wound therapies need to address one or more of these mechanisms to significantly advance wound care. Recent Advances: Self-assembled nanomaterials may provide new therapeutic options for chronic wound healing applications as those materials generally exhibit excellent biocompatibility and can bear multiple functionalities, such as ECM-mimicking properties, drug delivery capabilities, and tunable mechanics. Furthermore, self-assembled nanomaterials can be produced at low cost, and owing to their ability to self-organize, generate complex multifunctional structures that can be tailored to the varying sizes and shapes of chronic wounds. Self-assembled nanomaterials have been engineered to serve as wound dressings, growth factor delivery systems, and antimicrobials. Critical Issues: As there are many different types of self-assembled nanomaterials, which in turn have different mechanisms of self-assembly and physiochemical properties, one type of self-assembled nanomaterials may not be sufficient to address all underlying mechanisms of chronic wounds. However, self-assembled nanomaterials can be easily tailored, and developing multifunctional self-assembled nanomaterials that can address various targets in chronic wounds will be needed. Future Directions: Future studies should investigate combinations of various self-assembled nanomaterials to take full advantage of their multifunctional properties.


Asunto(s)
Nanoestructuras/química , Preparaciones Farmacéuticas , Cicatrización de Heridas/efectos de los fármacos , Animales , Enfermedad Crónica , Sistemas de Liberación de Medicamentos , Humanos , Nanomedicina , Nanoestructuras/economía , Piel/patología
4.
J Control Release ; 333: 176-187, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33781808

RESUMEN

Chronic and non-healing skin wounds are some of the most significant complications in patients with advanced diabetes. A contributing mechanism to this pathology is the non-enzymatic glycation of proteins due to hyperglycemia, leading to the formation of advanced glycation end products (AGEs). AGEs bind to the receptor for AGEs (RAGE), which triggers pro-inflammatory signals that may inhibit the proliferative phase of wound healing. Soluble forms of RAGE (sRAGE) may be used as a competitive inhibitor of AGE-mediated signaling; however, sRAGE is short-lived in the highly proteolytic wound environment. We developed a recombinant fusion protein containing the binding domain of RAGE (vRAGE) linked to elastin-like polypeptides (ELPs) that self-assembles into coacervates at around 30-31 °C. The coacervate size was concentration and temperature-dependent, ranging between 500 and 1600 nm. vRAGE-ELP reversed several AGE-mediated changes in cultured human umbilical vein endothelial cells, including a decrease in viable cell number, an increase in levels of reactive oxygen species (ROS), and an increased expression of the pro-inflammatory marker, intercellular adhesion molecule-1 (ICAM-1). vRAGE-ELP was stable in elastase in vitro for 7 days. When used in a single topical application on full-thickness excisional skin wounds in diabetic mice, wound closure was accelerated, with 90% and 100% wound closure on post-wounding days 28 and 35, respectively, compared to 62% and 85% on the same days in animals treated with vehicle control, consisting of ELP alone. This coacervate system topically delivering a competitive inhibitor of AGEs has potential for the treatment of diabetic wounds.


Asunto(s)
Diabetes Mellitus Experimental , Elastina , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Humanos , Ratones , Péptidos , Receptor para Productos Finales de Glicación Avanzada , Piel , Cicatrización de Heridas
5.
Sci Rep ; 8(1): 7957, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29785004

RESUMEN

There is widespread evidence that increasing functional mass of brown adipose tissue (BAT) via browning of white adipose tissue (WAT) could potentially counter obesity and diabetes. However, most current approaches focus on administration of pharmacological compounds which expose patients to highly undesirable side effects. Here, we describe a simple and direct tissue-grafting approach to increase BAT mass through ex vivo browning of subcutaneous WAT, followed by re-implantation into the host; this cell-therapy approach could potentially act synergistically with existing pharmacological approaches. With this process, entitled "exBAT", we identified conditions, in both mouse and human tissue, that convert whole fragments of WAT to BAT via a single step and without unwanted off-target pharmacological effects. We show that ex vivo, exBAT exhibited UCP1 immunostaining, lipid droplet formation, and mitochondrial metabolic activity consistent with native BAT. In mice, exBAT exhibited a highly durable phenotype for at least 8 weeks. Overall, these results enable a simple and scalable tissue-grafting strategy, rather than pharmacological approaches, for increasing endogenous BAT and studying its effect on host weight and metabolism.


Asunto(s)
Tejido Adiposo Pardo/trasplante , Tejido Adiposo Blanco , Obesidad/terapia , Adiposidad , Animales , Peso Corporal , Metabolismo Energético , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias , Fenotipo , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA