Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biochem Genet ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991568

RESUMEN

The number of patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis (TB), the presence of one disease affects the infectious status of the other. Meanwhile, coinfection may result in complications that make treatment more difficult. However, the molecular mechanisms underpinning the interaction between TB and COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the shared pathways and molecular biomarkers in TB and COVID-19, allowing us to determine the complex relationship between COVID-19 and TB. Two RNA-seq datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were used to find concerted differentially expressed genes (DEGs) between TB and COVID-19 to identify the common pathogenic mechanisms. A total of 124 common DEGs were detected and used to find shared pathways and drug targets. Several enterprising bioinformatics tools were applied to perform pathway analysis, enrichment analysis and networks analysis. Protein-protein interaction analysis and machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The mechanism of protein-drug interactions may have reference value in the treatment of coinfection of COVID-19 and TB.

2.
Andrologia ; 53(5): e14031, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33756037

RESUMEN

Diabetes mellitus erectile dysfunction (DMED) is a frequent complication of diabetes. Mesenchymal stem cell (MSC) therapy was demonstrated to improve erectile function in DMED. However, the pathogenesis of DMED and the mechanism by which MSCs function are still unclear. We established a rat model of DMED and gave MSC therapy through intracavernous injection. After transcriptome sequencing of rats' penile tissue, we identified a total of 1,097 overlapped differentially expressed genes (DEGs) of the normal control group, DMED group, and MSC-treated group, containing 189 upregulated genes and 908 downregulated genes. The enriched functions of upregulated DEGs included extracellular matrix organisation (GO:0030198), extracellular structure organisation (GO:0043062), and wound healing (GO:0042060), PPAR signalling pathway (rno03320), arachidonic acid metabolism (rno00590) and retinol metabolism (rno00830). The enriched functions of downregulated DEGs included peptidase activity (GO:0052547), hair follicle development (GO:0001942), intermediate filament-based process (GO:0045103), nitrogen metabolism (rno00910), aldosterone-regulated sodium reabsorption (rno04960) and retinol metabolism (rno00830). We constructed a PPI network with 547 nodes and 2,365 edges and identified 15 hub genes with high connectivity degree. In summary, 15 hub genes with potential roles in the development of ED were identified. Further functional research would be required to elucidate the molecular mechanism underlying misregulated genes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Disfunción Eréctil , Animales , Biología Computacional , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Disfunción Eréctil/genética , Disfunción Eréctil/terapia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Trasplante de Células Madre
3.
J Psychiatr Res ; 172: 244-253, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412787

RESUMEN

The comorbidities between gastroesophageal reflux disease (GERD) and various neurodegenerative and psychiatric disorders have been widely reported. However, the genetic correlations, causal relationships, and underlying mechanisms linking GERD to these disorders remain largely unknown. Here, we conducted a bidirectional Mendelian randomization (MR) analysis to determine the causality between GERD and 6 neurodegenerative and psychiatric disorders. Sensitivity analyses and multivariable MR were performed to test the robustness of our findings. Linkage disequilibrium score regression was used to assess the genetic correlation between these diseases as affected by heredity. Multiple bioinformatics tools combining two machine learning algorithms were applied to further investigate the potential mechanisms underlying these diseases. We found that genetically predicted GERD significantly increased the risk of Alzheimer's disease, major depressive disorder, and anxiety disorders. There might be a bidirectional relationship between GERD and insomnia. GERD has varying degrees of genetic correlations with AD, ALS, anxiety disorders, insomnia, and depressive disorder. Bioinformatics analyses revealed the hub shared genes and the common pathways between GERD and 6 neurodegenerative and psychiatric disorders. Our findings demonstrated the complex nature of the genetic architecture across these diseases and clarified their causality, highlighting that treatments for the cure or remission of GERD may serve as potential strategies for preventing and managing neurodegenerative and psychiatric disorders.


Asunto(s)
Trastorno Depresivo Mayor , Reflujo Gastroesofágico , Trastornos Mentales , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/genética , Trastornos Mentales/epidemiología , Trastornos Mentales/genética , Trastornos de Ansiedad/epidemiología , Trastornos de Ansiedad/genética , Reflujo Gastroesofágico/epidemiología , Reflujo Gastroesofágico/genética , Estudio de Asociación del Genoma Completo
4.
Asian J Androl ; 22(5): 513-518, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31670279

RESUMEN

The aim of this study was to investigate the role of seminal plasma miR-210-3p in the impairment of semen quality caused by varicocele. This study included 102 patients whose semen quality was normal when they were diagnosed with varicocele. A 2-year follow-up for included patients was performed, and they were divided into Group A (semen quality became abnormal) and Group B (semen quality remained normal) according to the results of semen analysis during the follow-up. Semen parameters and seminal plasma miR-210-3p expression were investigated by semen analysis and quantitative real-time polymerase chain reaction, respectively. In vitro experiments with GC-2 cells were performed to explore the role of miR-210-3p in spermatogenic cells. The results of quantitative real-time polymerase chain reaction showed that the level of seminal plasma miR-210-3p in Group A was higher than that in Group B both after 2-year follow-up and when they were diagnosed with varicocele (both P < 0.01). Apoptosis and proliferation assays showed that miR-210-3p induces apoptosis of spermatogenic cells by promoting caspase-3 activation. In conclusion, our study indicated that seminal plasma miR-210-3p induces spermatogenic cell apoptosis by activating caspase-3 in patients with varicocele. Seminal plasma miR-210-3p may be a potential biomarker for predicting impaired semen quality caused by varicocele.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , MicroARNs/metabolismo , Semen/metabolismo , Varicocele/fisiopatología , Adulto , Línea Celular , Proliferación Celular , Estudios de Seguimiento , Humanos , Infertilidad Masculina/etiología , Masculino , Análisis de Semen , Espermatocitos/fisiología , Varicocele/complicaciones , Varicocele/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA