Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(22): e113, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37941133

RESUMEN

Mammalian cells carrying defined genetic variations have shown great potentials in both fundamental research and therapeutic development. However, their full use was limited by lack of a robust method to construct large monoclonal high-quality combinatorial libraries. This study developed cell cycle arrested recombinase-mediated cassette exchange (aRMCE), able to provide monoclonality, precise genomic integration and uniform transgene expression. Via optimized nocodazole-mediated mitotic arrest, 20% target gene replacement efficiency was achieved without antibiotic selection, and the improved aRMCE efficiency was applicable to a variety of tested cell clones, transgene targets and transfection methods. As a demonstration of this versatile method, we performed directed evolution of fragment crystallizable (Fc), for which error-prone libraries of over 107 variants were constructed and displayed as IgG on surface of CHO cells. Diversities of constructed libraries were validated by deep sequencing, and panels of novel Fc mutants were identified showing improved binding towards specific Fc gamma receptors and enhanced effector functions. Due to its large cargo capacity and compatibility with different mutagenesis approaches, we expect this mammalian cell platform technology has broad applications for directed evolution, multiplex genetic assays, cell line development and stem cell engineering.


Asunto(s)
Recombinasas , Cricetinae , Animales , Recombinasas/genética , Cricetulus , Células CHO , Transfección , Ciclo Celular
2.
Biotechnol Prog ; 40(1): e3392, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37734055

RESUMEN

Initiating and regulating humoral immunity, Fc gamma receptors (FcγRs) have been identified both as therapeutics and as drug targets, and thus production of biologically active FcγRs is highly demanded for biopharmaceutical development. Focusing on low-affinity FcγRs IIA (131H/R allotypes), IIB, and IIIA (176F/V), this study used human 293-F cells to achieve correct post-translational modifications (PTMs) including biotinylation, N-glycosylation, and disulfides. Approaches involving co-expression of FcγR-AviTag and Escherichia coli biotin ligase BirA, endoplasmic reticulum retention, stable and transient transfections, and optimization of transgene ratio were investigated. Protein electrophoresis under reducing and non-reducing conditions, enzymatic deglycosylation, streptavidin pull-down assays, and binding kinetic analysis collectively indicated that the produced FcγR ectodomains were fully biotinylated, N-glycosylated, had formed disulfide bond, and exhibited expected binding affinities toward IgG1 trastuzumab and its Fc mutants. A clear trade-off between production yield and PTM quality was also observed. Achieving multiple types of PTMs completely by one-step cell culture should have applications for the production of a variety of complex proteins of biomedical importance.


Asunto(s)
Inmunoglobulina G , Receptores de IgG , Humanos , Receptores de IgG/química , Glicosilación , Cinética , Escherichia coli/genética , Escherichia coli/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA