RESUMEN
Carbon monoxide dehydrogenase (CODH), formate dehydrogenase (FDH), hydrogenase (H2ase), and nitrogenase (N2ase) are crucial enzymatic catalysts that facilitate the conversion of industrially significant gases such as CO, CO2, H2, and N2. The tunnels in the gas-converting enzymes serve as conduits for these low molecular weight gases to access deeply buried catalytic sites. The identification of the substrate tunnels is imperative for comprehending the substrate selectivity mechanism underlying these gas-converting enzymes. This knowledge also holds substantial value for industrial applications, particularly in addressing the challenges associated with separation and utilization of byproduct gases. In this comprehensive review, we delve into the emerging field of tunnel engineering, presenting a range of approaches and analyses. Additionally, we propose methodologies for the systematic design of enzymes, with the ultimate goal of advancing protein engineering strategies.
Asunto(s)
Gases , Ingeniería de Proteínas , Hidrógeno/metabolismo , Catálisis , Monóxido de Carbono/metabolismo , Dióxido de CarbonoRESUMEN
FeâS cluster-harboring enzymes, such as carbon monoxide dehydrogenases (CODH), employ sophisticated artificial electron mediators like viologens to serve as potent biocatalysts capable of cleaning-up industrial off-gases at stunning reaction rates. Unraveling the interplay between these enzymes and their associated mediators is essential for improving the efficiency of CODHs. Here we show the electron mediator-interaction site on ChCODHs (Ch, Carboxydothermus hydrogenoformans) using a systematic approach that leverages the viologen-reactive characteristics of superficial aromatic residues. By enhancing mediator-interaction (R57G/N59L) near the D-cluster, the strategically tailored variants exhibit a ten-fold increase in ethyl viologen affinity relative to the wild-type without sacrificing the turn-over rate (kcat). Viologen-complexed structures reveal the pivotal positions of surface phenylalanine residues, serving as external conduits for the D-cluster to/from viologen. One variant (R57G/N59L/A559W) can treat a broad spectrum of waste gases (from steel-process and plastic-gasification) containing O2. Decoding mediator interactions will facilitate the development of industrially high-efficient biocatalysts encompassing gas-utilizing enzymes.
Asunto(s)
Electrones , Complejos Multienzimáticos , Complejos Multienzimáticos/química , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/química , Gases , Viológenos , Monóxido de Carbono/químicaRESUMEN
The development of a lignin peroxidase (LiP) that is thermostable even under acidic pH conditions is a main issue for efficient enzymatic lignin degradation due to reduced repolymerization of free phenolic products at acidic pH (< 3). Native LiP under mild conditions (half-life (t1/2) of 8.2 days at pH 6) exhibits a marked decline in thermostability under acidic conditions (t1/2 of only 14 min at pH 2.5). Thus, improving the thermostability of LiP in acidic environments is required for effective lignin depolymerization in practical applications. Here, we show the improved thermostability of a synthetic LiPH8 variant (S49C/A67C/H239E, PDB: 6ISS) capable of strengthening the helix-loop interactions under acidic conditions. This variant retained excellent thermostability at pH 2.5 with a 10-fold increase in t1/2 (2.52 h at 25 °C) compared with that of the native enzyme. X-ray crystallography analysis showed that the recombinant LiPH8 variant is the only unique lignin peroxidase containing five disulfide bridges, and the helix-loop interactions of the synthetic disulfide bridge and ionic salt bridge in its structure are responsible for stabilizing the Ca2+-binding region and heme environment, resulting in an increase in overall structural resistance against acidic conditions. Our work will allow the design of biocatalysts for ligninolytic enzyme engineering and for efficient biocatalytic degradation of plant biomass in lignocellulose biorefineries.