Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO Rep ; 24(8): e56335, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37341560

RESUMEN

While there is growing evidence that many epigenetically silenced genes in cancer are tumour suppressor candidates, their significance in cancer biology remains unclear. Here, we identify human Neuralized (NEURL), which acts as a novel tumour suppressor targeting oncogenic Wnt/ß-catenin signalling in human cancers. The expression of NEURL is epigenetically regulated and markedly suppressed in human colorectal cancer. We, therefore, considered NEURL to be a bona fide tumour suppressor in colorectal cancer and demonstrate that this tumour suppressive function depends on NEURL-mediated oncogenic ß-catenin degradation. We find that NEURL acts as an E3 ubiquitin ligase, interacting directly with oncogenic ß-catenin, and reducing its cytoplasmic levels in a GSK3ß- and ß-TrCP-independent manner, indicating that NEURL-ß-catenin interactions can lead to a disruption of the canonical Wnt/ß-catenin pathway. This study suggests that NEURL is a therapeutic target against human cancers and that it acts by regulating oncogenic Wnt/ß-catenin signalling.


Asunto(s)
Neoplasias del Colon , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Vía de Señalización Wnt , Neoplasias del Colon/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Línea Celular Tumoral
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003620

RESUMEN

The intricate interplay between DNA damage response (DDR) and metabolism unveils a profound insight into the fundamental mechanisms governing the maintenance of genomic integrity [...].


Asunto(s)
Reparación del ADN , Neoplasias , Humanos , Daño del ADN , Neoplasias/genética
3.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816862

RESUMEN

The physiological impact of the aberrant oxidation products on genomic DNA were demonstrated by embryonic lethality or the cancer susceptibility and/or neurological symptoms of animal impaired in the base excision repair (BER); the major pathway to maintain genomic integrity against non-bulky DNA oxidation. However, growing evidence suggests that other DNA repair pathways or factors that are not primarily associated with the classical BER pathway are also actively involved in the mitigation of oxidative assaults on the genomic DNA, according to the corresponding types of DNA oxidation. Among others, factors dedicated to lesion recognition in the nucleotide excision repair (NER) pathway have been shown to play eminent roles in the process of lesion recognition and stimulation of the enzyme activity of some sets of BER factors. Besides, substantial bulky DNA oxidation can be preferentially removed by a canonical NER mechanism; therefore, loss of function in the NER pathway shares common features arising from BER defects, including cancer predisposition and neurological disorders, although NER defects generally are nonlethal. Here we discuss recent achievements for delineating newly arising roles of NER lesion recognition factors to facilitate the BER process, and cooperative works of BER and NER pathways in response to the genotoxic oxidative stress.


Asunto(s)
Reparación del ADN , ADN/metabolismo , Animales , Salud , Humanos , Cinética , Modelos Biológicos , Oxidación-Reducción
4.
Int J Mol Sci ; 19(11)2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30380668

RESUMEN

Genetic loss or mutations in tumor suppressor genes promote tumorigenesis. The prospective tumor suppressor tristetraprolin (TTP) has been shown to negatively regulate tumorigenesis through destabilizing the messenger RNAs of critical genes implicated in both tumor onset and tumor progression. Regulation of TTP has therefore emerged as an important issue in tumorigenesis. Similar to other tumor suppressors, TTP expression is frequently downregualted in various human cancers, and its low expression is correlated with poor prognosis. Additionally, disruption in the regulation of TTP by various mechanisms results in the inactivation of TTP protein or altered TTP expression. A recent study showing alleviation of Myc-driven lymphomagenesis by the forced expression of TTP has shed light on new therapeutic avenues for cancer prevention and treatment through the restoration of TTP expression. In this review, we summarize key oncogenes subjected to the TTP-mediated mRNA degradation, and discuss how dysregulation of TTP can contribute to tumorigenesis. In addition, the control mechanism underlying TTP expression at the posttranscriptional and posttranslational levels will be discussed.


Asunto(s)
Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Tristetraprolina/genética , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Progresión de la Enfermedad , Genes Supresores de Tumor , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tristetraprolina/metabolismo
5.
Nucleic Acids Res ; 42(7): 4427-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24489120

RESUMEN

Mammalian cryptochromes (Crys) are essential circadian clock factors implicated in diverse clock-independent physiological functions, including DNA damage responses. Here we show that Cry1 modulates the ATR-mediated DNA damage checkpoint (DDC) response by interacting with Timeless (Tim) in a time-of-day-dependent manner. The DDC capacity in response to UV irradiation showed a circadian rhythm. Interestingly, clock-deficient Cry1 and Cry2 double knockout (Cry(DKO)) cells retained substantial DDC capacity compared with clock-proficient wild-type cells, although the Cry1-modulated oscillation of the DDC capacity was abolished in Cry(DKO) cells. We found temporal interaction of Cry1 and Tim in the nucleus. When Cry1 was expressed in the nucleus, it was critical for circadian ATR activity. We regenerated rhythmic DDC responses by ectopically expressing Cry1 in Cry(DKO) cells. In addition, we also investigated the DDC capacity in the liver of mice that were intraperitoneally injected with cisplatin at different circadian times (CT). When mice were injected at CT20, about 2-fold higher expression of phosphorylated minichromosome maintenance protein 2 (p-MCM2) was detected compared with mice injected at CT08, which consequently affected the removal rate of cisplatin-DNA adducts from genomic DNA. Taken together, our data demonstrate the intimate interaction between the circadian clock and the DDC system during genotoxic stress in clock-ticking cells.


Asunto(s)
Relojes Circadianos , Criptocromos/metabolismo , Daño del ADN , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Relojes Circadianos/genética , Reparación del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Int J Mol Sci ; 17(11)2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27827925

RESUMEN

Ultraviolet (UV) radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PP). If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able to neutralize UV-induced photolesions through nucleotide excision repair (NER). The NER pathway has multiple components including seven xeroderma pigmentosum (XP) proteins (XPA to XPG) and numerous auxiliary factors, including ataxia telangiectasia and Rad3-related (ATR) protein kinase and RCC1 like domain (RLD) and homologous to the E6-AP carboxyl terminus (HECT) domain containing E3 ubiquitin protein ligase 2 (HERC2). In this review we highlight recent data on the transcriptional and posttranslational regulation of NER activity.


Asunto(s)
Reparación del ADN , Procesamiento Proteico-Postraduccional , Neoplasias Cutáneas/genética , Transcripción Genética , Rayos Ultravioleta/efectos adversos , Xerodermia Pigmentosa/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Dímeros de Pirimidina/metabolismo , Transducción de Señal , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Ubiquitina-Proteína Ligasas , Xerodermia Pigmentosa/etiología , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/patología , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
7.
Biochem Biophys Res Commun ; 461(3): 543-8, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25912875

RESUMEN

Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A-G (XPA-XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated in the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas Serina-Treonina Quinasas/fisiología , Rayos Ultravioleta , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Humanos , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño
8.
J Anim Sci Biotechnol ; 15(1): 30, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369477

RESUMEN

BACKGROUND: Deoxynivalenol (DON) is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay, nutrient malabsorption, weight loss, emesis, and a reduction of feed intake in livestock. Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract, we used chicken organoids to assess the DON-induced dysfunction of the small intestine. RESULTS: We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10. We confirmed the mRNA expression levels of various cell markers in the organoids, such as KI67, leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), mucin 2 (MUC2), chromogranin A (CHGA), cytokeratin 19 (CK19), lysozyme (LYZ), and microtubule-associated doublecortin-like kinase 1 (DCLK1), and compared the results to those of the small intestine. Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine. DON damaged the tight junctions of the organoids, which resulted in increased permeability. CONCLUSIONS: Our organoid culture displayed topological, genetic, and functional similarities with the small intestine cells. Based on these similarities, we confirmed that DON causes small intestine dysfunction. Chicken organoids offer a practical model for the research of harmful substances.

9.
Nat Cell Biol ; 8(8): 863-9, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16845380

RESUMEN

Extracellular signal regulated kinases (ERKs) represent a signalling hub in many physiological responses and have pivotal functions in cell proliferation, differentiation, development and death, as well as in synaptic plasticity. Mitogen-activated protein kinase phosphatases (MKPs) selectively inactivate ERKs by dephosphorylating critical phosphothreonine and phosphotyrosine residues. Transcriptional induction of MKP expression and posttranscriptional stabilization of MKP mRNA are well-documented as negative-feedback mechanisms for ERK signalling. Vaccinia-related kinase 3 (VRK3) is a member of the novel VRK family, but its function has not been defined. Here, we show that VRK3 suppresses ERK activity through direct binding to one of the MKPs, vaccinia H1-related (VHR), which specifically dephosphorylates and inactivates ERK in the nucleus. Notably, VRK3 enhances the phosphatase activity of VHR by a mechanism independent of its kinase activity. VRK3 is therefore a member of a new class of phosphatase-activating kinases that regulate the activity of ERK. Our findings show that direct interaction of VHR with VRK3 posttranslationally regulates ERK signalling.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Activación Enzimática , Immunoblotting , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Neuritas/enzimología , Neuritas/fisiología , Células PC12 , Monoéster Fosfórico Hidrolasas/genética , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Ratas , Acetato de Tetradecanoilforbol/farmacología , Transfección
10.
Mol Biol Rep ; 40(1): 303-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23054008

RESUMEN

A secreted MUC6 mucin is reported to be expressed highly in the stomach and gall bladder. In previous our study, the five minisatellites were identified and a significant association between MUC6-MS5 alleles and gastric cancer was reported. Because of aberrant MUC6 expression is often found in gastrointestinal diseases, we evaluated a relationship between MUC6-MS5 and susceptibility to colorectal cancers. Case-control study was performed with 1,103 cancer-free controls and 414 rectal cancer cases. A significant association (OR = 2.70) between short rare MUC6-MS5 alleles (7, 9 repeats) and the occurrence of cancer was observed in rectal cancer [95 % confidence interval (CI), 1.12-6.54; p = 0.022]. Furthermore, a comparison by gender showed the differences in the association ratios between rectal cancer and short rare MUC6-MS5 alleles: male, 3.97 (CI: 1.36-11.5; p = 0.006) versus female 0.91 (CI: 0.18-4.75; p = 0.913). We also examined the association according to lymphovascular invasion (LVI). The frequency of LVI positive rectal cancer was increased in short rare allele cases than in the total rectal cases: 16.2 % versus 42.9 %. Therefore, we suggest that the short rare MUC6-MS5 alleles may be related to cancer development in male and these cancer cases may be related the bad prognosis.


Asunto(s)
Carcinoma/genética , Predisposición Genética a la Enfermedad , Repeticiones de Minisatélite , Mucina 6/genética , Polimorfismo Genético , Neoplasias del Recto/genética , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Factores Sexuales
11.
Nucleic Acids Res ; 39(8): 3176-87, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21193487

RESUMEN

The XPA (Xeroderma pigmentosum A) protein is one of the six core factors of the human nucleotide excision repair system. In this study we show that XPA is a rate-limiting factor in all human cell lines tested, including a normal human fibroblast cell line. The level of XPA is controlled at the transcriptional level by the molecular circadian clock and at the post-translational level by a HECT domain family E3 ubiquitin ligase called HERC2. Stabilization of XPA by downregulation of HERC2 moderately enhances excision repair activity. Conversely, downregulation of XPA by siRNA reduces excision repair activity in proportion to the level of XPA. Ubiquitination and proteolysis of XPA are inhibited by DNA damage that promotes tight association of the protein with chromatin and its dissociation from the HERC2 E3 ligase. Finally, in agreement with a recent report, we find that XPA is post-translationally modified by acetylation. However, contrary to the previous claim, we find that in mouse liver only a small fraction of XPA is acetylated and that downregulation of SIRT1 deacetylase in two human cell lines does not affect the overall repair rate. Collectively, the data reveal that XPA is a limiting factor in excision repair and that its level is coordinately regulated by the circadian clock, the ubiquitin-proteasome system and DNA damage.


Asunto(s)
Reparación del ADN , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Acetilación , Animales , Línea Celular , Relojes Circadianos/genética , Daño del ADN , Fibroblastos/metabolismo , Humanos , Ratones , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
12.
Proc Natl Acad Sci U S A ; 107(11): 4890-5, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-20304803

RESUMEN

Cisplatin is one of the most commonly used anticancer drugs. It kills cancer cells by damaging their DNA, and hence cellular DNA repair capacity is an important determinant of its efficacy. Here, we investigated the repair of cisplatin-induced DNA damage in mouse liver and testis tissue extracts prepared at regular intervals over the course of a day. We find that the XPA protein, which plays an essential role in repair of cisplatin damage by nucleotide excision repair, exhibits circadian oscillation in the liver but not in testis. Consequently, removal of cisplatin adducts in liver extracts, but not in testis extracts, exhibits a circadian pattern with zenith at approximately 5 pm and nadir at approximately 5 am. Furthermore, we find that the circadian oscillation of XPA is achieved both by regulation of transcription by the core circadian clock proteins including cryptochrome and by regulation at the posttranslational level by the HERC2 ubiquitin ligase. These findings may be used as a guide for timing of cisplatin chemotherapy.


Asunto(s)
Cisplatino/farmacología , Criptocromos/metabolismo , Daño del ADN , Reparación del ADN/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Animales , Relojes Biológicos/efectos de los fármacos , Línea Celular , Ritmo Circadiano/efectos de los fármacos , Aductos de ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Factores de Tiempo , Extractos de Tejidos , Ubiquitina-Proteína Ligasas , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
13.
Int J Biochem Cell Biol ; 162: 106454, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37574041

RESUMEN

Cisplatin, a widely prescribed chemotherapeutic agent for treating solid tumors, induces DNA adducts and activates cellular defense mechanisms, including DNA repair, cell cycle checkpoint control, and apoptosis. Considering the circadian rhythmicity displayed by most chemotherapeutic agents and their varying therapeutic efficacy based on treatment timing, our study aimed to investigate whether the circadian clock system influences the DNA damage responses triggered by cisplatin in synchronized cells. We examined the DNA damage responses in circadian-synchronized wild-type mouse embryonic fibroblasts (WT-MEF; clock-proficient cells), cryptochrome1 and 2 double knock-out MEF (CRYDKO; clock-deficient cells), and mouse hepatocarcinoma Hepa1c1c7 cells. Varying the treatment time resulted in a significant difference in the rate of platinum-DNA adduct removal specifically in circadian-synchronized WT-MEF, while CRYDKO did not exhibit such variation. Moreover, diurnal variation in other DNA damage responses, such as cell cycle checkpoint activity indicated by p53 phosphorylation status and apoptosis measured by DNA break frequency, was observed only in circadian-synchronized WT-MEF, not in CRYDKO or mouse hepatocarcinoma Hepa1c1c7 cells. These findings highlight that the DNA damage responses triggered by cisplatin are indeed governed by circadian control exclusively in clock-proficient cells. This outcome bears potential implications for enhancing or devising chronotherapy approaches for cancer patients.


Asunto(s)
Relojes Circadianos , Neoplasias , Animales , Ratones , Cisplatino/farmacología , Cisplatino/uso terapéutico , Aductos de ADN/uso terapéutico , Daño del ADN , Fibroblastos/metabolismo , Reparación del ADN , Relojes Circadianos/genética , Neoplasias/genética , Apoptosis
14.
Toxins (Basel) ; 15(4)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37104238

RESUMEN

Deoxynivalenol (DON) is known as a vomitoxin, which frequently contaminates feedstuffs, such as corn, wheat, and barley. Intake of DON-contaminated feed has been known to cause undesirable effects, including diarrhea, emesis, reduced feed intake, nutrient malabsorption, weight loss, and delay in growth, in livestock. However, the molecular mechanism of DON-induced damage of the intestinal epithelium requires further investigation. Treatment with DON triggered ROS in IPEC-J2 cells and increased the mRNA and protein expression levels of thioredoxin interacting protein (TXNIP). To investigate the activation of the inflammasome, we confirmed the mRNA and protein expression levels of the NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1 (CASP-1). Moreover, we confirmed that caspase mediates the mature form of interleukin-18, and the cleaved form of Gasdermin D (GSDMD) was increased. Based on these results, our study suggests that DON can induce damage through oxidative stress and pyroptosis in the epithelial cells of the porcine small intestine via NLRP3 inflammasome.


Asunto(s)
Inflamasomas , Piroptosis , Animales , Porcinos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Caspasa 1/metabolismo , Caspasas/metabolismo , Células Epiteliales , Intestino Delgado/metabolismo , ARN Mensajero
15.
Proc Natl Acad Sci U S A ; 106(8): 2864-7, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19164551

RESUMEN

The circadian clock regulates the daily rhythms in the physiology and behavior of many organisms, including mice and humans. These cyclical changes at molecular and macroscopic levels affect the organism's response to environmental stimuli such as light and food intake and the toxicity and efficacy of chemo- and radiotherapeutic agents. In this work, we investigated the circadian behavior of the nucleotide excision repair capacity in the mouse cerebrum to gain some insight into the optimal circadian time for favorable therapeutic response with minimal side effects in cancer treatment with chemotherapeutic drugs that produce bulky adducts in DNA. We find that nucleotide excision repair activity in the mouse cortex is highest in the afternoon/evening hours and is at its lowest in the night/early morning hours. The circadian oscillation of the repair capacity is caused at least in part by the circadian oscillation of the xeroderma pigmentosum A DNA damage recognition protein.


Asunto(s)
Encéfalo/fisiología , Ritmo Circadiano , Reparación del ADN , Animales , Proteínas CLOCK , Proteínas de Ciclo Celular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/metabolismo , Transactivadores/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
16.
Toxics ; 10(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36136500

RESUMEN

Deoxynivalenol (DON) is a mycotoxin that is found in feed ingredients derived from grains such as corn and wheat. Consumption of DON-contaminated feed has been shown to cause damage to the intestine, kidneys, and liver. However, the molecular mechanism by which DON exerts its effect in the small intestine is not completely understood. As a result, we profiled gene expression in intestinal epithelial cells treated with DON and examined the molecular function in vitro. We hypothesized that DON could induce apoptosis via the FOXO3a-signaling pathway in intestinal epithelial cells based on these findings. DON induced the apoptosis and the translocation of FOXO3a into the nucleus. Moreover, the inhibiting of FOXO3a alleviated the apoptosis and expression of apoptosis-related genes (TRAL, BCL-6, CASP8, and CASP3). ERK1/2 inhibitor treatment suppressed the translocation of FOXO3a into the nucleus. Our discovery suggests that DON induces apoptosis in intestinal epithelial cells through the FOXO3a-signaling pathway.

17.
J Biol Chem ; 285(22): 16562-71, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20233725

RESUMEN

Mammalian Timeless is a multifunctional protein that performs essential roles in the circadian clock, chromosome cohesion, DNA replication fork protection, and DNA replication/DNA damage checkpoint pathways. The human Timeless exists in a tight complex with a smaller protein called Tipin (Timeless-interacting protein). Here we investigated the mechanism by which the Timeless-Tipin complex functions as a mediator in the ATR-Chk1 DNA damage checkpoint pathway. We find that the Timeless-Tipin complex specifically mediates Chk1 phosphorylation by ATR in response to DNA damage and replication stress through interaction of Tipin with the 34-kDa subunit of replication protein A (RPA). The Tipin-RPA interaction stabilizes Timeless-Tipin and Tipin-Claspin complexes on RPA-coated ssDNA and in doing so promotes Claspin-mediated phosphorylation of Chk1 by ATR. Our results therefore indicate that RPA-covered ssDNA not only supports recruitment and activation of ATR but also, through Tipin and Claspin, it plays an important role in the action of ATR on its critical downstream target Chk1.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/fisiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras/genética , Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN , Dimerización , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Fracciones Subcelulares/metabolismo
18.
Biomolecules ; 11(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064641

RESUMEN

Genomic integrity is constantly insulted by solar ultraviolet (UV) radiation. Adaptative cellular mechanisms called DNA damage responses comprising DNA repair, cell cycle checkpoint, and apoptosis, are believed to be evolved to limit genomic instability according to the photoperiod during a day. As seen in many other key cellular metabolisms, genome surveillance mechanisms against genotoxic UV radiation are under the control of circadian clock systems, thereby exhibiting daily oscillations in their catalytic activities. Indeed, it has been demonstrated that nucleotide excision repair (NER), the sole DNA repair mechanism correcting UV-induced DNA photolesions, and ataxia-telangiectasia-mutated and Rad3-related (ATR)-mediated cell cycle checkpoint kinase are subjected to the robust control of the circadian clock. The molecular foundation for the circadian rhythm of UV-induced DNA damage responses in mammalian cells will be discussed.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ritmo Circadiano , Daño del ADN , Reparación del ADN , Animales , Humanos , Rayos Ultravioleta
19.
Oncogene ; 39(16): 3245-3257, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32086441

RESUMEN

ATR and CHK1 play key roles in the protection and recovery of the stalled replication forks. Claspin, an adaptor for CHK1 activation, is essential for DNA damage signaling and efficient replication fork progression. Here, we show that tristetraprolin (TTP), an mRNA-binding protein, can modulate the replication stress response via stabilization of Claspin mRNA. TTP depletion compromised specifically in the phosphorylation of CHK1, but not p53 or H2AX among other ATR substrates, and produced CHK1-defective replication phenotypes including accumulation of stalled replication forks. Importantly, the expression of siRNA-resistant TTP in TTP-deficient cells restored CHK1 phosphorylation and reduced the number of stalled replication forks as close to the control cells. Besides, we found that TTP was required for efficient replication fork progression even in the absence of exogenous DNA damage in a Claspin-dependent manner. Mechanistically, TTP was able to bind to the 3'-untranslated region of Claspin mRNA to increase the stability of Claspin mRNA which eventually contributed to the subsequent ATR-CHK1 activation upon DNA damage. Taken together, our results revealed an intimate link between TTP-dependent Claspin mRNA stability and ATR-CHK1-dependent replication fork stability to maintain replication fork integrity and chromosomal stability.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Replicación del ADN/genética , Estabilidad del ARN/genética , Tristetraprolina/genética , Regiones no Traducidas 3'/genética , Células A549 , Proteínas de la Ataxia Telangiectasia Mutada/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Inestabilidad Cromosómica/genética , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Células HCT116 , Histonas/genética , Humanos , ARN Mensajero/genética , Estrés Fisiológico/genética , Proteína p53 Supresora de Tumor/genética
20.
Biochim Biophys Acta ; 1783(1): 49-58, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18035061

RESUMEN

Vaccinia-related kinase 3 (VRK3), previously characterized as a direct activator of vaccinia H1-related (VHR) phosphatase, inactivates extracellular signal-regulated kinase (ERK) in the nucleus of neuronal cells. Here we show that VRK3 is expressed in various other rodent tissues and in embryos, and regulates VHR phosphatase activity in these tissues. We observed colocalization of VRK3 and VHR in the testis tissue and could detect protein complex containing VRK3, VHR and ERK in immunoprecipitation analysis. Notably, the addition of recombinant VRK3 protein to total protein lysates, obtained either from adult tissues or embryos, enhanced the phosphatase activity of VHR, but not the activity of MKP3. The results further indicate that the VHR-VRK3 complex is a phosphatase-active form. In addition, we found that VRK3 can regulate EGF-induced cellular growth signaling that is mediated by ERK activation. Our results suggest that in addition to neuronal cells, various other rodent adult tissues and embryos possess a common signaling mechanism which is involved in an indirect regulation of ERK activity by VRK3-mediated VHR activity.


Asunto(s)
Envejecimiento/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Fosfatasa 3 de Especificidad Dual/metabolismo , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación Enzimológica de la Expresión Génica , Masculino , Ratones , Especificidad de Órganos , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA