Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(21): 14593-14599, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38718194

RESUMEN

Twisted moiré superlattice is featured with its moiré potential energy, the depth of which renders an effective approach to strengthening the exciton-exciton interaction and exciton localization toward high-performance quantum photonic devices. However, it remains as a long-standing challenge to further push the limit of moiré potential depth. Herein, owing to the pz orbital induced band edge states enabled by the unique sp-C in bilayer γ-graphdiyne (GDY), an ultradeep moiré potential of ∼289 meV is yielded. After being twisted into the hole-to-hole layer stacking configuration, the interlayer coupling is substantially intensified to augment the lattice potential of bilayer GDY up to 475%. The presence of lateral constrained moiré potential shifts the spatial distribution of electrons and holes in excitons from the regular alternating mode to their respective separated and localized mode. According to the well-established wave function distribution of electrons contained in excitons, the AA-stacked site is identified to serve for exciton localization. This work extends the materials systems available for moiré superlattice design further to serial carbon allotropes featured with benzene ring-alkyne chain coupling, unlocking tremendous potential for twistronic-based quantum device applications.

2.
Chem Rev ; 122(1): 1273-1348, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34788542

RESUMEN

Single-atom catalysis has been recognized as a pivotal milestone in the development history of heterogeneous catalysis by virtue of its superior catalytic performance, ultrahigh atomic utilization, and well-defined structure. Beyond single-atom protrusions, two more motifs of single-atom substitutions and single-atom vacancies along with synergistic single-atom motif assemblies have been progressively developed to enrich the single-atom family. On the other hand, besides traditional carbon material based substrates, a wide variety of 2D transitional metal dichalcogenides (TMDs) have been emerging as a promising platform for single-atom catalysis owing to their diverse elemental compositions, variable crystal structures, flexible electronic structures, and intrinsic activities toward many catalytic reactions. Such substantial expansion of both single-atom motifs and substrates provides an enriched toolbox to further optimize the geometric and electronic structures for pushing the performance limit. Concomitantly, higher requirements have been put forward for synthetic and characterization techniques with related technical bottlenecks being continuously conquered. Furthermore, this burgeoning single-atom catalyst (SAC) system has triggered serial scientific issues about their changeable single atom-2D substrate interaction, ambiguous synergistic effects of various atomic assemblies, as well as dynamic structure-performance correlations, all of which necessitate further clarification and comprehensive summary. In this context, this Review aims to summarize and critically discuss the single-atom engineering development in the whole field of 2D TMD based catalysis covering their evolution history, synthetic methodologies, characterization techniques, catalytic applications, and dynamic structure-performance correlations. In situ characterization techniques are highlighted regarding their critical roles in real-time detection of SAC reconstruction and reaction pathway evolution, thus shedding light on lifetime dynamic structure-performance correlations which lay a solid theoretical foundation for the whole catalytic field, especially for SACs.

3.
Nano Lett ; 22(4): 1467-1474, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35133160

RESUMEN

Fundamental understanding of ion migration inside perovskites is of vital importance for commercial advancements of photovoltaics. However, the mechanism for external ions incorporation and its effect on ion migration remains elusive. Herein, taking K+ and Cs+ co-incorporated mixed halide perovskites as a model, the impact of external ions on ion migration behavior has been interpreted via multiple dimensional characterization aspects. The space-effect on phase segregation inhibition has been revealed by the photoluminescence evolution and in situ dynamic cathodoluminescence behaviors. The plane-effect on current suppression along grain boundary has been evidenced via visualized surface current mapping, local current hysteresis, and time-resolved current decay. And the point-effect on activation energy incremental for individual ions has been also probed by cryogenic electronic quantification. All these results sufficiently demonstrate the passivated ion migration results in the eventually improved phase stability of perovskite, of which the origin lies in various ion migration energy barriers.

4.
J Am Chem Soc ; 144(41): 19163-19172, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36196037

RESUMEN

The catalytic activity of transition metal-based catalysts is overwhelmingly dependent on the geometric configuration. Identification and interpretation of different geometric configurations' contributions to catalytic activity plays a pivotal role in catalytic performance elevation. Spinel structured AB2X4, consisting of tetrahedral (A2+-X)Td and octahedral (B3+-X)Oh geometric configurations, is a prototypical category of multi-geometric-configuration featured catalysts. However, it is still under debate about the predominant geometric configuration responsible for spinel catalyst activity, and the mechanistic origin of specific activity discrepancy among varied geometric configurations also remains ambiguous. Herein, CoTd2+ and CoOh3+ in Co3O4 are replaced by catalytically inert Zn2+ and Al3+ to yield ZnCo2O4 and CoAl2O4, respectively, thus ensuring the manipulable exposure of monotypic active configurations. By means of pulse voltammetry and in situ extended X-ray absorption fine structure, (Co3+-O)Oh is identified to be dominant for alkaline HER. In-depth theoretical investigation in combination with X-ray absorption spectroscopy further interprets the synergistic effect between Co and O sites in (Co3+-O)Oh configuration on water reduction kinetics upon both water dissociation and hydrogen desorption steps. Furthermore, specific facet dependence of catalytic activity is also deciphered based on precise facet exposure identification and serial theoretical analysis. This work unambiguously figures out the subtle geometric configuration dependence of spinel catalyst activity for water reduction and highlights the synergistic relationship among different components confined in geometric configuration, thereby shedding new light on the rational design of advanced catalysts from the atomic level of geometric configuration optimization.

5.
J Ultrasound Med ; 41(6): 1497-1507, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34549454

RESUMEN

OBJECTIVE: To externally validate the Ovarian-adnexal Reporting and Data System (O-RADS) and evaluate its performance in differentiating benign from malignant adnexal masses (AMs) compared with the Gynecologic Imaging Reporting and Data System (GI-RADS) and Assessment of Different NEoplasias in the adneXa (ADNEX). METHODS: A retrospective analysis was performed on 734 cases from the Second Affiliated Hospital of Fujian Medical University. All patients underwent transvaginal or transabdominal ultrasound examination. Pathological diagnoses were obtained for all the included AMs. O-RADS, GI-RADS, and ADNEX were used to evaluate AMs by two sonologists, and the diagnostic efficacy of the three systems was analyzed and compared using pathology as the gold standard. We used the kappa index to evaluate the inter-reviewer agreement (IRA). RESULTS: A total of 734 AMs, including 564 benign masses, 69 borderline masses, and 101 malignant masses were included in this study. O-RADS (0.88) and GI-RADS (0.90) had lower sensitivity than ADNEX (0.95) (P < .05), and the PPV of O-RADS (0.98) was higher than that of ADNEX (0.96) (P < .05). These three systems showed good IRA. CONCLUSION: O-RADS, GI-RADS, and ADNEX showed little difference in diagnostic performance among resident sonologists. These three systems have their own characteristics and can be selected according to the type of center, access to patients' clinical data, or personal comfort.


Asunto(s)
Enfermedades de los Anexos , Neoplasias Ováricas , Enfermedades de los Anexos/diagnóstico por imagen , Sistemas de Datos , Femenino , Humanos , Neoplasias Ováricas/patología , Estudios Retrospectivos , Sensibilidad y Especificidad , Ultrasonografía/métodos
6.
Chem Soc Rev ; 50(4): 2696-2736, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33409511

RESUMEN

Metal-halide hybrid perovskites have prompted the prosperity of the sustainable energy field and simultaneously demonstrated their great potential in meeting both the growing consumption of energy and the increasing social development requirements. Their inimitable features such as strong absorption ability, direct photogeneration of free carriers, long carrier diffusion lengths, ease of fabrication, and low production cost triggered the development of perovskite solar cells (PSCs) at an incredible rate, which soon reached power conversion efficiencies up to the commercialized level. During their evolution process, it has been witnessed that alkali metal cations play a pivotal role in the crystal structure as well as intrinsic properties of hybrid perovskites, thus enabling the unique positioning of the correlated doping strategy in the development history of PSCs in the past decade. Herein, we summarize the growth and progress of the state-of-the-art alkali metal cation (Cs+, Rb+, K+, Na+, Li+) doping in the field of hybrid perovskite-based photovoltaics. To start with, the accurate identification of different alkali metal-occupied locations in the perovskite crystal lattice are discussed in detail with highlighted advanced characterization methods. Beyond that, the location-dependent functions induced by alkali metal doping are intensely focused upon and comprehensively assessed, indicating their versatile and special effects on perovskites in terms of bottleneck issues such as crystallinity modulation, crystal structure stabilization, defect passivation, and ion-migration inhibition. Thereafter, we are committed to analyze their responsible working mechanisms so as to unveil the relationship between occupied locations and crucial roles for each doped cation. The systematical overview and in-depth understanding of the superiorities of such strategies together with their future challenges and prospects would further boost the advancement of perovskite-related fields.

7.
Angew Chem Int Ed Engl ; 61(42): e202211094, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36042541

RESUMEN

π electron configuration plays a pivotal role in metal-free carbon catalysts, and its delocalization degree overwhelmingly dominates catalytic activity. However, precise and targeted regulation of inherent π electrons still remain challenging. Here, one chemical-bond-targeted physical clipping strategy is proposed and effectively adopted in the cutting-edge carbon material system of graphdiyne (GDY) as a concept-of-proof. The delocalized electrons are expected to be periodically reformatted for substantially enhancing π electron delocalization. Via theoretical screening and well-designed experiments, periodical interruption of Csp-Csp2 bonds in GDY can render sp-C sites with decent activity, ultimately yielding top-ranking electrocatalytic performance without intentionally introducing external decoration. The as-proposed concept endows a universal prescription to push the limit of delocalization degree, thus shedding novel light on the rational design of decent metal-free catalysts.

8.
J Am Chem Soc ; 142(9): 4298-4308, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-31999446

RESUMEN

Defect engineering is widely applied in transition metal dichalcogenides (TMDs) to achieve electrical, optical, magnetic, and catalytic regulation. Vacancies, regarded as a type of extremely delicate defect, are acknowledged to be effective and flexible in general catalytic modulation. However, the influence of vacancy states in addition to concentration on catalysis still remains vague. Thus, via high throughput calculations, the optimized sulfur vacancy (S-vacancy) state in terms of both concentration and distribution is initially figured out among a series of MoS2 models for the hydrogen evolution reaction (HER). In order to realize it, a facile and mild H2O2 chemical etching strategy is implemented to introduce homogeneously distributed single S-vacancies onto the MoS2 nanosheet surface. By systematic tuning of the etching duration, etching temperature, and etching solution concentration, comprehensive modulation of the S-vacancy state is achieved. The optimal HER performance reaches a Tafel slope of 48 mV dec-1 and an overpotential of 131 mV at a current density of 10 mA cm-2, indicating the superiority of single S-vacancies over agglomerate S-vacancies. This is ascribed to the more effective surface electronic structure engineering as well as the boosted electrical transport properties. By bridging the gap, to some extent, between precise design from theory and practical modulation in experiments, the proposed strategy extends defect engineering to a more sophisticated level to further unlock the potential of catalytic performance enhancement.

9.
Small ; 16(47): e2005520, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33136343

RESUMEN

The atomic-thin 2D semiconductors have emerged as plausible candidates for future optoelectronics with higher performance in terms of the scaling process. However, currently reported 2D photodetectors still have huge shortcomings in ultraviolet and especially visible-blind wavelengths. Here, a simple and nontoxic surfactant-assisted synthesis strategy is reported for the controllable growth of atomically thin (1.5 to 4 nm) ZnO nanosheets with size ranging from 3 to 30 µm. Benefit from the short carbon chains and the water-soluble ability of sodium dodecyl sulfate (SDS), the synthesized ZnO nanosheets possess high crystal quality and clean surface, leading to good compatibility with traditional micromanufacturing technology and high sensitivity to UV light. The photodetectors constructed with ZnO demonstrate the highest responsivity (up to 2.0 × 104 A W-1 ) and detectivity (D* = 6.83 × 1014 Jones) at a visible-blind wavelength of 254 nm, and the photoresponse speed is optimized by the 400 °C annealing treatment (τR  = 3.97 s, τD  = 5.32 s), thus the 2D ZnO can serve as a promising material to fill in the gap for deep-UV photodetection. The method developed here opens a new avenue to controllably synthesize 2D nonlayered materials and accelerates their applications in high-performance optoelectronic devices.

10.
Angew Chem Int Ed Engl ; 59(28): 11573-11582, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32259338

RESUMEN

The matching of charge transport layer and photoactive layer is critical in solar energy conversion devices, especially for planar perovskite solar cells based on the SnO2 electron-transfer layer (ETL) owing to its unmatched photogenerated electron and hole extraction rates. Graphdiyne (GDY) with multi-roles has been incorporated to maximize the matching between SnO2 and perovskite regarding electron extraction rate optimization and interface engineering towards both perovskite crystallization process and subsequent photovoltaic service duration. The GDY doped SnO2 layer has fourfold improved electron mobility due to freshly formed C-O σ bond and more facilitated band alignment. The enhanced hydrophobicity inhibits heterogeneous perovskite nucleation, contributing to a high-quality film with diminished grain boundaries and lower defect density. Also, the interfacial passivation of Pb-I anti-site defects has been demonstrated via GDY introduction.

11.
12.
Small ; 12(2): 245-51, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26618499

RESUMEN

A CdS/reduced graphene oxide (RGO)/ZnO nanowire array (NWAs) heterostructure is designed, which exhibits enhanced photoelectrochemical (PEC) activity compared to pure ZnO, RGO/ZnO, and CdS/ZnO. The enhancement can be attributed to the synergistic effect of the high electron mobility of ordered 1D ZnO NWAs, extended visible-light absorption of CdS nanocrystals, and the formed type II band alignment between them. Moreover, the incorporation of RGO further promotes the charge carrier separation and transfer process due to its excellent charge collection and shuttling characteristics. Subsequently, the CdS/RGO/ZnO heterostructure is successfully utilized for the PEC bioanalysis of glutathione at 0 V (vs Ag/AgCl). The self-powered device demonstrates satisfactory sensing performance with rapid response, a wide detection range from 0.05 mm to 1 mm, an acceptable detection limit of 10 µm, as well as certain selectivity, reproducibility, and stability. Therefore, the CdS/RGO/ZnO heterostructure has opened up a promising channel for the development of PEC biosensors.


Asunto(s)
Técnicas Biosensibles/métodos , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Grafito/química , Luz , Nanocables/química , Sulfuros/química , Óxido de Zinc/química , Espectroscopía Dieléctrica , Electrodos , Glutatión/análisis , Nanocables/ultraestructura , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
13.
Sensors (Basel) ; 16(11)2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27792199

RESUMEN

Ni/NiO nanoflower modified reduced graphene oxide (rGO) nanocomposite (Ni/NiO-rGO) was introduced to screen printed electrode (SPE) for the construction of a nonenzymatic electrochemical glucose biosensor. The Ni/NiO-rGO nanocomposite was synthesized by an in situ reduction process. Graphene oxide (GO) hybrid Nafion sheets first chemical adsorbed Ni ions and assembled on the SPE. Subsequently, GO and Ni ions were reduced by hydrazine hydrate. The electrochemical properties of such a Ni/NiO-rGO modified SPE were carefully investigated. It showed a high activity for electrocatalytic oxidation of glucose in alkaline medium. The proposed nonenzymatic sensor can be utilized for quantification of glucose with a wide linear range from 29.9 µM to 6.44 mM (R = 0.9937) with a low detection limit of 1.8 µM (S/N = 3) and a high sensitivity of 1997 µA/mM∙cm-2. It also exhibited good reproducibility as well as high selectivity.

14.
Nano Lett ; 14(2): 480-5, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24382199

RESUMEN

The fatigue behavior of ZnO nanowires (NWs) and microwires was systematically investigated with in situ transmission electron microscopy electromechanical resonance method. The elastic modulus and mechanical quality factors of ZnO wires were obtained. No damage or failure was found in the intact ZnO wires after resonance for about 10(8)-10(9) cycles, while the damaged ZnO NW under electron beam (e-beam) irradiation fractured after resonance for seconds. The research results will provide a useful guide for designing, fabricating, and optimizing electromechanical nanodevices based on ZnO nanomaterials, as well as future applications.

15.
Phys Chem Chem Phys ; 16(20): 9525-9, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24728006

RESUMEN

A self-powered Schottky-type ultraviolet photodetector with Al-Pt interdigitated electrodes has been fabricated based on selectively grown ZnO nanowire arrays. At zero bias, the fabricated photodetector exhibited high sensitivity and excellent selectivity to UV light illumination with a fast response time of 81 ms. By tuning the Schottky barrier height through the thermally induced variation of the interface chemisorbed oxygen, an ultrahigh sensitivity of 3.1 × 10(4) was achieved at 340 K without an external power source, which was 82% higher than that obtained at room temperature. According to the thermionic emission-diffusion theory and the solar cell theory, the changes in the photocurrent of the photodetector at zero bias with various system temperatures were calculated, which agreed well with the experimental data. This work demonstrates a promising approach to modulating the performance of a self-powered photodetector by heating and provides theoretical support for studying the thermal effect on the future photoelectric device.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124598, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850819

RESUMEN

The interactions between gold nanoclusters (AuNCs) and proteins have been extensively investigated. Nevertheless, the structure-activity relationship between gold nanoclusters and proteins in terms of ligand isomerization remained unclear. Here, interactions between Au25NCs modified with para-, inter- and ortho-mercaptobenzoic acid (p/m/o-MBA-Au25NCs) and human serum albumin (HSA) were analyzed. The results of the multispectral approach showed that all three gold nanoclusters bound to the site I in dynamic modes to increase the stability of HSA. There were significant differences in the binding intensity, thermodynamic parameters, main driving forces, and binding ratios between these three gold nanoclusters and HSA, which might be related to the existence forms of the three ligands on the surface of AuNCs. Due to the different polarities of AuNCs themselves, the impact of three AuNCs on the microenvironment of amino acid residues in HSA was also different. It could be seen that ligand isomerization significantly affected the interactions between gold nanoclusters and proteins. This work will provide theoretical guidance for ligand selection and biological applications of metal nanoclusters.


Asunto(s)
Oro , Nanopartículas del Metal , Albúmina Sérica Humana , Termodinámica , Oro/química , Humanos , Nanopartículas del Metal/química , Ligandos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Relación Estructura-Actividad , Isomerismo , Unión Proteica
17.
Natl Sci Rev ; 11(4): nwae042, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38487497

RESUMEN

Tracking the dynamic surface evolution of metal halide perovskite is crucial for understanding the corresponding fundamental principles of photoelectric properties and intrinsic instability. However, due to the volatility elements and soft lattice nature of perovskites, several important dynamic behaviors remain unclear. Here, an ultra-high vacuum (UHV) interconnection system integrated by surface-sensitive probing techniques has been developed to investigate the freshly cleaved surface of CH3NH3PbBr3  in situ under given energy stimulation. On this basis, the detailed three-step chemical decomposition pathway of perovskites has been clarified. Meanwhile, the evolution of crystal structure from cubic phase to tetragonal phase on the perovskite surface has been revealed under energy stimulation. Accompanied by chemical composition and crystal structure evolution, electronic structure changes including energy level position, hole effective mass, and Rashba splitting have also been accurately determined. These findings provide a clear perspective on the physical origin of optoelectronic properties and the decomposition mechanism of perovskites.

18.
J Enzyme Inhib Med Chem ; 28(6): 1182-91, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23057845

RESUMEN

Plant cytochrome P450 is a key enzyme responsible for the herbicide resistance but the molecular basis of the mechanism is unclear. To understand this, four typical plant P450s and a widely resistant herbicide chlortoluron were analysed by carrying out homology modelling, molecular docking, molecular dynamics simulations and binding free energy analysis. Our results demonstrate that: (i) the putative hydrophobic residues located in the F-helix and polar residues in I-helix are critical in the herbicide resistance; (ii) the binding mode analysis and binding free energy calculation indicate that the distance between catalytic site of chlortoluron and heme of P450, as well as the binding affinity are key elements affecting the resistance for plants. In conclusion, this work provides a new insight into the interactions of plant P450s with herbicide from a molecular level, offering valuable information for the future design of novel effective herbicides which also escape from the P450 metabolism.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a los Herbicidas , Compuestos de Fenilurea/metabolismo , Plantas/enzimología , Biocatálisis , Modelos Moleculares , Estructura Molecular , Compuestos de Fenilurea/química , Termodinámica
19.
Adv Mater ; 35(7): e2207172, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36401565

RESUMEN

Although CsPbI3 perovskites have shown tremendous potential in the photovoltaic field owing to their excellent thermal stability, the device performance is seriously restricted by severe photovoltage loss. The buried titanium oxide/perovskite interface plays a critical role in interfacial charge transport and perovskite crystallization, which is closely related to open-circuit voltage deficit stemming from nonradiative recombination. Herein, target molecules named 3-sulphonatopropyl acrylate potassium salts are deliberately employed with special functional groups for modifying the buried interface, giving rise to favorable functions in terms of passivating interfacial defects, optimizing energetic alignment, and facilitating perovskite crystallization. Experimental characterizations and theoretical calculations reveal that the buried interface modification inhibits the electron transfer barrier and simultaneously improves perovskite crystal quality, thereby reducing trap-assisted charge recombination and interfacial energetic loss. Consequently, the omnibearing modification regarding the buried interface endows the devices with an impressive efficiency of 20.98%, achieving a record-low VOC deficit of 0.451 V. The as-proposed buried interface modification strategy renders with a universal prescription to push the limit of VOC deficit, showing a promising future in developing high-performance all-inorganic perovskite photovoltaics.

20.
Adv Mater ; 35(50): e2206576, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36189862

RESUMEN

Vacancy defect engineering has been well leveraged to flexibly shape comprehensive physicochemical properties of diverse catalysts. In particular, growing research effort has been devoted to engineering chalcogen anionic vacancies (S/Se/Te) of 2D transition metal dichalcogenides (2D TMDs) toward the ultimate performance limit of electrocatalytic hydrogen evolution reaction (HER). In spite of remarkable progress achieved in the past decade, systematic and in-depth insights into the state-of-the-art vacancy engineering for 2D-TMDs-based electrocatalysis are still lacking. Herein, this review delivers a full picture of vacancy engineering evolving from aggregated to atomic configurations covering their development background, controllable manufacturing, thorough characterization, and representative HER application. Of particular interest, the deep-seated correlations between specific vacancy regulation routes and resulting catalytic performance improvement are logically clarified in terms of atomic rearrangement, charge redistribution, energy band variation, intermediate adsorption-desorption optimization, and charge/mass transfer facilitation. Beyond that, a broader vision is cast into the cutting-edge research fields of vacancy-engineering-based single-atom catalysis and dynamic structure-performance correlations across catalyst service lifetime. Together with critical discussion on residual challenges and future prospects, this review sheds new light on the rational design of advanced defect catalysts and navigates their broader application in high-efficiency energy conversion and storage fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA