Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 216(3): 708-15, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18366089

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent cells capable of developing along the chondrogenic, osteogenic and adipogenic lineages. As such, they have received interest as a potential cell source for tissue engineering strategies. Cartilage is an avascular tissue and thus resides in a microenvironment with reduced oxygen tension. The aim of this study was to examine the effect of a low oxygen environment on MSC differentiation along the chondrogenic route. In MSCs exposed to chondrogenic growth factors, transforming growth factor-beta and dexamethasone, in a hypoxic environment (2% oxygen), the induction of collagen II expression and proteoglygan deposition was significantly greater than that observed when cells were exposed to the chondrogenic growth factors under normoxic (20% oxygen) conditions. The transcription factor, hypoxia-inducible factor-1alpha (HIF-1alpha), is a crucial mediator of the cellular response to hypoxia. Following exposure of MSCs to hypoxia (2% oxygen), HIF-1alpha translocated from the cytosol to the nucleus and bound to its target DNA consensus sequence. Similarly, hypoxia evoked an increase in phosphorylation of both AKT and p38 mitogen activated protein kinase, upstream of HIF-1alpha activation. Furthermore, the PI3 kinase/AKT inhibitor, LY294002, and p38 inhibitor, SB 203580, prevented the hypoxia-mediated stabilisation of HIF-1alpha. To assess the role of HIF-1alpha in the hypoxia-induced increase in chondrogenesis, we employed an siRNA knockdown approach. In cells exposed to HIF-1alpha siRNA, the hypoxia-induced enhancement of chondrogenesis, as evidenced by upregulation of collagen II, sox-9 and proteoglycan deposition, was absent. This provides evidence for HIF-1alpha being a key mediator of the beneficial effect of a low oxygen environment on chondrogenesis.


Asunto(s)
Condrogénesis/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia , Células Madre Mesenquimatosas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Diferenciación Celular , Cromonas/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Inhibidores Enzimáticos/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Imidazoles/metabolismo , Células Madre Mesenquimatosas/citología , Morfolinas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Piridinas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Factor de Transcripción SOX9 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Pharmaceuticals (Basel) ; 3(9): 2970-2985, 2010 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27713386

RESUMEN

This review discusses the role of the cannabinoid system in cartilage tissue and endeavors to establish if targeting the cannabinoid system has potential in mesenchymal stem cell based tissue-engineered cartilage repair strategies. The review discusses the potential of cannabinoids to protect against the degradation of cartilage in inflamed arthritic joints and the influence of cannabinoids on the chondrocyte precursors, mesenchymal stem cells (MSCs). We provide experimental evidence to show that activation of the cannabinoid system enhances the survival, migration and chondrogenic differentiation of MSCs, which are three major tenets behind the success of a cell-based tissue-engineered cartilage repair strategy. These findings highlight the potential for cannabinoids to provide a dual function by acting as anti-inflammatory agents as well as regulators of MSC biology in order to enhance tissue engineering strategies aimed at cartilage repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA