RESUMEN
BACKGROUND: Plasmodium falciparum serine repeat antigen 5 (PfSERA5) is an abundant blood stage protein that plays an essential role in merozoite egress and invasion. The native protein undergoes extensive proteolytic cleavage that appears to be tightly regulated. PfSERA5 N-terminal fragment is being developed as vaccine candidate antigen. Although PfSERA5 belongs to papain-like cysteine protease family, its catalytic domain has a serine in place of cysteine at the active site. METHODS: In the present study, we synthesized a number of peptides from the N- and C-terminal regions of PfSERA5 active domain and evaluated their inhibitory potential. RESULTS: The final proteolytic step of PfSERA5 involves removal of a C-terminal ~6kDa fragment that results in the generation of a catalytically active ~50kDa enzyme. In the present study, we demonstrate that two of the peptides derived from the C-terminal ~6kDa region inhibit the parasite growth and also cause a delay in the parasite development. These peptides reduced the enzyme activity of the recombinant protein and co-localized with the PfSERA5 protein within the parasite, thereby indicating the specific inhibition of PfSERA5 activity. Molecular docking studies revealed that the inhibitory peptides interact with the active site of the protein. Interestingly, the peptides did not have an effect on the processing of PfSERA5. CONCLUSIONS: Our observations indicate the temporal regulation of the final proteolytic cleavage step that occurs just prior to egress. GENERAL SIGNIFICANCE: These results reinforce the role of PfSERA5 for the intra-erythrocytic development of malaria parasite and show the role of carboxy terminal ~6kDa fragments in the regulation of PfSERA5 activity. The results also suggest that final cleavage step of PfSERA5 can be targeted for the development of new anti-malarials.
Asunto(s)
Antígenos de Protozoos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/enzimología , Plasmodium falciparum/enzimología , Proteolisis , Antígenos de Protozoos/genética , Eritrocitos/metabolismo , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/genética , Péptidos/química , Péptidos/farmacología , Plasmodium falciparum/genética , Estructura Terciaria de ProteínaRESUMEN
Large numbers of Plasmodium genes have been predicted to have introns. However, little information exists on the splicing mechanisms in this organism. Here, we describe the DExD/DExH-box containing Pre-mRNA processing proteins (Prps), PfPrp2p, PfPrp5p, PfPrp16p, PfPrp22p, PfPrp28p, PfPrp43p and PfBrr2p, present in the Plasmodium falciparum genome and characterized the role of one of these factors, PfPrp16p. It is a member of DEAH-box protein family with nine collinear sequence motifs, a characteristic of helicase proteins. Experiments with the recombinantly expressed and purified PfPrp16 helicase domain revealed binding to RNA, hydrolysis of ATP as well as catalytic helicase activities. Expression of helicase domain with the C-terminal helicase-associated domain (HA2) reduced these activities considerably, indicating that the helicase-associated domain may regulate the PfPrp16 function. Localization studies with the PfPrp16 GFP transgenic lines suggested a role of its N-terminal domain (1-80 amino acids) in nuclear targeting. Immunodepletion of PfPrp16p, from nuclear extracts of parasite cultures, blocked the second catalytic step of an in vitro constituted splicing reaction suggesting a role for PfPrp16p in splicing catalysis. Further we show by complementation assay in yeast that a chimeric yeast-Plasmodium Prp16 protein, not the full length PfPrp16, can rescue the yeast prp16 temperature-sensitive mutant. These results suggest that although the role of Prp16p in catalytic step II is highly conserved among Plasmodium, human and yeast, subtle differences exist with regards to its associated factors or its assembly with spliceosomes.
Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Empalme del ARN/fisiología , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , Núcleo Celular/enzimología , Núcleo Celular/genética , ARN Helicasas DEAD-box/genética , Genoma de Protozoos/fisiología , Humanos , Mutación , Plasmodium falciparum/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , ARN Mensajero/genética , ARN Protozoario/genética , Saccharomyces cerevisiae , Homología de Secuencia de AminoácidoRESUMEN
BACKGROUND: Splicing and alternate splicing are the two key biological processes that result in the generation of diverse transcript and protein isoforms in Plasmodium falciparum as well as in other eukaryotic organisms. Not much is known about the organization of splicing machinery and mechanisms in human malaria parasite. Present study reports the organization and assembly of Plasmodium spliceosome Sm core complex. METHODS: Presence of all the seven Plasmodium Sm-like proteins in the intra-erythrocytic stages was assessed based on the protein(s) expression analysis using immuno-localization and western blotting. Localization/co-localization studies were performed by immunofluorescence analysis on thin parasite smear using laser scanning confocal microscope. Interaction studies were carried out using yeast two-hybrid analysis and validated by in vitro pull-down assays. PfPRMT5 (arginine methyl transferase) and PfSmD1 interaction analysis was performed by pull-down assays and the interacting proteins were identified by MALDI-TOF spectrometry. RESULTS: PfSm proteins are expressed at asexual blood stages of the parasite and show nucleo-cytoplasmic localization. Protein-protein interaction studies showed that PfSm proteins form a heptameric complex, typical of spliceosome core complex as shown in humans. Interaction of PfSMN (survival of motor neuron, tudor domain containing protein) or PfTu-TSN (Tudor domain of Tudor Staphylococcal nuclease) with PfSmD1 proteins was found to be methylation dependent. Co-localization by immunofluorescence and co-immunoprecipitation studies suggested an association between PfPRMT5 and PfSmD1, indicating the role of arginine methylation in assembly of Plasmodium spliceosome complex. CONCLUSIONS: Plasmodium Sm-like proteins form a heptameric ring-like structure, although the arrangement of PfSm proteins slightly differs from human splicing machinery. The data shows the interaction of PfSMN with PfSmD1 and this interaction is found to be methylation dependent. PfPRMT5 probably exists as a part of methylosome complex that may function in the cytoplasmic assembly of Sm proteins at asexual blood stages of P. falciparum.
Asunto(s)
Arginina/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Empalmosomas/química , Empalmosomas/metabolismo , Western Blotting , Centrifugación , Metilación , Microscopía Confocal , Microscopía Fluorescente , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Técnicas del Sistema de Dos HíbridosRESUMEN
Plasmodium merozoite surface protein-1 (MSP-1) is an essential antigen for the merozoite invasion of erythrocytes. A key challenge to the development of an effective malaria vaccine that can block the erythrocyte invasion is to establish the molecular interaction(s) among the parasite surface proteins as well as with the host cell encoded receptors. In the present study, we applied molecular interactions and proteome approaches to identify PfMSP-1 associated complex on the merozoite surface. Proteomic analysis identified a major malaria surface protein, PfRhopH3 interacting with PfMSP-1(42). Pull-down experiments with merozoite lysate using anti-PfMSP-1 or anti-PfRhopH3 antibodies showed 16 bands that when identified by tandem mass spectrometry corresponded to11 parasite proteins: PfMSP-3, PfMSP-6, PfMSP-7, PfMSP-9, PfRhopH3, PfRhopH1, PfRAP-1, PfRAP-2, and two RAP domain containing proteins. This MSP-1 associated complex was specifically seen at schizont/merozoite stages but not the next ring stage. We could also identify many of these proteins in culture supernatant, suggesting the shedding of the complex. Interestingly, the PfRhopH3 protein also showed binding to the human erythrocyte and anti-PfRhopH3 antibodies blocked the erythrocyte invasion of the merozoites. These results have potential implications in the development of PfMSP-1 based blood stage malaria vaccine.
Asunto(s)
Proteína 1 de Superficie de Merozoito/química , Complejos Multiproteicos/química , Plasmodium falciparum/química , Proteínas Protozoarias/química , Animales , Células COS , Chlorocebus aethiops , Electroforesis en Gel de Poliacrilamida , Eritrocitos/metabolismo , Eritrocitos/parasitología , Humanos , Immunoblotting , Inmunoprecipitación , Proteína 1 de Superficie de Merozoito/metabolismo , Merozoítos/química , Merozoítos/metabolismo , Complejos Multiproteicos/metabolismo , Plasmodium falciparum/metabolismo , Mapeo de Interacción de Proteínas , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Tudor Staphylococcal Nuclease (p100 or SND1), a member of the micronuclease family is a multifunctional protein that plays a key role(s) in transcription and splicing processes in many eukaryotic cells. PfTudor-SN, a Plasmodium homolog of the human p100 protein is a structurally conserved protein; however molecular details of its function are not yet understood. Our previous studies have shown that PfTudor-SN binds RNA and it is possible to selectively inhibit parasite growth by PfTudor-SN specific drugs. In the present study, we identified the molecular interactions between Plasmodium falciparum Tudor-SN and twelve Plasmodium proteins such as Histone h2A, SPT2 (a transcriptional regulator), a Cold-shock DNA binding protein in a bacterial two-hybrid screen. To get further insight into some of these interactions, we mapped the interaction domain in PfTudor-SN protein using the yeast two-hybrid system. Of these proteins, Plasmodium N-methyl-d-aspartate receptor associated protein, PfUbiquitin conjugating enzyme and Cold-shock DNA binding protein showed interaction with the SN domains of PfTudor-SN. Immuno-localization studies of the interacting proteins showed their presence predominantly in the nucleus, which inevitably suggests the molecular interactions between these proteins and PfTudor-SN. Furthermore, we also identified a molecular interaction between the Tudor domain of PfTudor-SN protein and Plasmodium spliceosomal Sm protein, PfSmD1 advocating the role of PfTudor-SN in the spliceosome assembly. Together, these results suggest multiple role(s) for PfTudor-SN protein mainly in nuclear and splicing processes at asexual blood stages of the malaria parasite.
Asunto(s)
Núcleo Celular/enzimología , Núcleo Celular/genética , Nucleasa Microcócica/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Empalme del ARN/fisiología , Secuencia de Aminoácidos , Animales , Western Blotting , Biblioteca de Genes , Inmunoprecipitación , Estadios del Ciclo de Vida , Nucleasa Microcócica/química , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Plasmodium falciparum/crecimiento & desarrollo , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/química , Empalmosomas/metabolismo , Técnicas del Sistema de Dos HíbridosRESUMEN
Alanine racemase catalyzes the interconversion of L-alanine and D-alanine and plays a crucial role in spore germination and cell wall biosynthesis. In this study, alanine racemase produced by Bacillus anthracis was expressed and purified as a monomer in Escherichia coli and the importance of lysine 41 in the cofactor binding octapeptide and tyrosine 270 in catalysis was evaluated. The native enzyme exhibited an apparent K(m) of 3 mM for L-alanine, and a V(max) of 295 micromoles/min/mg, with the optimum activity occurring at 37 degrees C and a pH of 8-9. The activity observed in the absence of exogenous pyridoxal 5'-phosphate suggested that the cofactor is bound to the enzyme. Additionally, the UV-visible absorption spectra indicated that the activity was pH independece, of VV-visible absorption spectra suggests that the bound PLP exists as a protonated Schiff's base. Furthermore, the loss of activity observed in the apoenzyme suggested that bound PLP is required for catalysis. Finally, the enzyme followed non-competitive and mixed inhibition kinetics for hydroxylamine and propionate with a K(i) of 160 microM and 30 mM, respectively. [BMB reports 2009; 42(1): 47-52].