Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 132(6): 921-2, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18358804

RESUMEN

Most vertebrates synthesize vitamin C (ascorbate) de novo from glucose, but humans and certain other mammals cannot. In this issue, Montel-Hagen et al. (2008) demonstrate that erythrocytes from these ascorbate auxotrophs switch the preference of their glucose transporter Glut1 from glucose to dehydroascorbate (DHA), the oxidized form of vitamin C. This substrate preference switch is mediated by the membrane protein stomatin and is an evolutionary adaptation to vitamin C deficiency.


Asunto(s)
Ácido Deshidroascórbico/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Animales , Ácido Ascórbico/metabolismo , Eritrocitos/metabolismo , Humanos , Mamíferos , Proteínas de la Membrana/metabolismo
2.
J Biol Chem ; 295(6): 1716-1726, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31896574

RESUMEN

Budding yeast (Saccharomyces cerevisiae) responds to low cytosolic iron by up-regulating the expression of iron import genes; iron import can reflect iron transport into the cytosol or mitochondria. Mmt1 and Mmt2 are nuclearly encoded mitochondrial proteins that export iron from the mitochondria into the cytosol. Here we report that MMT1 and MMT2 expression is transcriptionally regulated by two pathways: the low-iron-sensing transcription factor Aft1 and the oxidant-sensing transcription factor Yap1. We determined that MMT1 and MMT2 expression is increased under low-iron conditions and decreased when mitochondrial iron import is increased through overexpression of the high-affinity mitochondrial iron importer Mrs3. Moreover, loss of iron-sulfur cluster synthesis induced expression of MMT1 and MMT2 We show that exposure to the oxidant H2O2 induced MMT1 expression but not MMT2 expression and identified the transcription factor Yap1 as being involved in oxidant-mediated MMT1 expression. We defined Aft1- and Yap1-dependent transcriptional sites in the MMT1 promoter that are necessary for low-iron- or oxidant-mediated MMT1 expression. We also found that the MMT2 promoter contains domains that are important for regulating its expression under low-iron conditions, including an upstream region that appears to partially repress expression under low-iron conditions. Our findings reveal that MMT1 and MMT2 are induced under low-iron conditions and that the low-iron regulator Aft1 is required for this induction. We further uncover an Aft1-binding site in the MMT1 promoter sufficient for inducing MMT1 transcription and identify an MMT2 promoter region required for low iron induction.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Proteínas de Transporte de Catión/metabolismo , Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional
3.
J Biol Chem ; 295(32): 11002-11020, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32518166

RESUMEN

Mitochondrial iron import is essential for iron-sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2-/- mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2-/- mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1-/-/Mfrn2-/- bone marrow-derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Proliferación Celular/fisiología , Regeneración Hepática/fisiología , Proteínas de Transporte de Membrana/fisiología , Animales , Homeostasis , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo
4.
Nat Rev Mol Cell Biol ; 9(1): 72-81, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17987043

RESUMEN

Mammalian iron homeostasis must be meticulously regulated so that this essential element is available for use, but at the same time prevented from promoting the formation of toxic radicals. Controlling the entry of iron into blood plasma is the main mechanism by which iron stores in the body are physiologically manipulated and regulated. Defects in iron acquisition at the cellular and systemic levels lead to human disorders, which involve either iron overload or iron deficiency. Discoveries of iron transporters and insights into their regulation have provided important information about iron metabolism and genetic iron disorders.


Asunto(s)
Deficiencias de Hierro , Trastornos del Metabolismo del Hierro/metabolismo , Hierro/metabolismo , Animales , Transporte Biológico/fisiología , Homeostasis , Humanos , Trastornos del Metabolismo del Hierro/genética
5.
J Biol Chem ; 293(27): 10782-10795, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29773647

RESUMEN

Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29 Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo , Homeostasis , Proteínas Hierro-Azufre/genética , Proteínas Mitocondriales/genética , Oxidación-Reducción , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
6.
J Biol Chem ; 293(51): 19797-19811, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30366982

RESUMEN

Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.


Asunto(s)
Células Eritroides/metabolismo , Eritropoyetina/metabolismo , Ferroquelatasa/metabolismo , Hemo/biosíntesis , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Células Eritroides/citología , Eritropoyesis , Células HEK293 , Humanos , Proteínas de la Membrana/química , Ratones , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Transporte de Proteínas
7.
Mol Cell ; 44(5): 683-4, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152471

RESUMEN

In this issue of Molecular Cell, Sanvisens et al. (2011) report a new mechanism for regulation of yeast ribonucleotide reductase activity that occurs during iron deprivation.

8.
J Biol Chem ; 292(37): 15577-15586, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760824

RESUMEN

The budding yeast Saccharomyces cerevisiae stores iron in the vacuole, which is a major resistance mechanism against iron toxicity. One key protein involved in vacuolar iron storage is the iron importer Ccc1, which facilitates iron entry into the vacuole. Transcription of the CCC1 gene is largely regulated by the binding of iron-sulfur clusters to the activator domain of the transcriptional activator Yap5. Additional evidence, however, suggests that Yap5-independent transcriptional activation of CCC1 also contributes to iron resistance. Here, we demonstrate that components of the signaling pathway involving the low-glucose sensor Snf1 regulate CCC1 transcription and iron resistance. We found that SNF1 deletion acts synergistically with YAP5 deletion to regulate CCC1 transcription and iron resistance. A kinase-dead mutation of Snf1 lowered iron resistance as did deletion of SNF4, which encodes a partner protein of Snf1. Deletion of all three alternative partners of Snf1 encoded by SIT1, SIT2, and GAL83 decreased both CCC1 transcription and iron resistance. The Snf1 complex is known to activate the general stress transcription factors Msn2 and Msn4. We show that Msn2 and Msn4 contribute to Snf1-mediated CCC1 transcription. Of note, SNF1 deletion in combination with MSN2 and MSN4 deletion resulted in additive effects on CCC1 transcription, suggesting that other activators contribute to the regulation of CCC1 transcription. In conclusion, we show that yeast have developed multiple transcriptional mechanisms to regulate Ccc1 expression and to protect against high cytosolic iron toxicity.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Transporte Biológico/efectos de los fármacos , Proteínas de Transporte de Catión/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hierro/metabolismo , Hierro/toxicidad , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Viabilidad Microbiana , Mutación , Oxidantes/metabolismo , Oxidantes/toxicidad , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Vacuolas/metabolismo
9.
J Biol Chem ; 292(39): 16284-16299, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808058

RESUMEN

ATP-binding cassette subfamily B member 10 (Abcb10) is a mitochondrial ATP-binding cassette (ABC) transporter that complexes with mitoferrin1 and ferrochelatase to enhance heme biosynthesis in developing red blood cells. Reductions in Abcb10 levels have been shown to reduce mitoferrin1 protein levels and iron import into mitochondria, resulting in reduced heme biosynthesis. As an ABC transporter, Abcb10 binds and hydrolyzes ATP, but its transported substrate is unknown. Here, we determined that decreases in Abcb10 did not result in protoporphyrin IX accumulation in morphant-treated zebrafish embryos or in differentiated Abcb10-specific shRNA murine Friend erythroleukemia (MEL) cells in which Abcb10 was specifically silenced with shRNA. We also found that the ATPase activity of Abcb10 is necessary for hemoglobinization in MEL cells, suggesting that the substrate transported by Abcb10 is important in mediating increased heme biosynthesis during erythroid development. Inhibition of 5-aminolevulinic acid dehydratase (EC 4.2.1.24) with succinylacetone resulted in both 5-aminolevulinic acid (ALA) accumulation in control and Abcb10-specific shRNA MEL cells, demonstrating that reductions in Abcb10 do not affect ALA export from mitochondria and indicating that Abcb10 does not transport ALA. Abcb10 silencing resulted in an alteration in the heme biosynthesis transcriptional profile due to repression by the transcriptional regulator Bach1, which could be partially rescued by overexpression of Alas2 or Gata1, providing a mechanistic explanation for why Abcb10 shRNA MEL cells exhibit reduced hemoglobinization. In conclusion, our findings rule out that Abcb10 transports ALA and indicate that Abcb10's ATP-hydrolysis activity is critical for hemoglobinization and that the substrate transported by Abcb10 provides a signal that optimizes hemoglobinization.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación Enzimológica de la Expresión Génica , Hemo/biosíntesis , Proteínas de Pez Cebra/metabolismo , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Embrión no Mamífero/enzimología , Embrión no Mamífero/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Microinyecciones , Morfolinos/metabolismo , Mutación , Interferencia de ARN , ARN Interferente Pequeño , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
10.
Nature ; 491(7425): 608-12, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23135403

RESUMEN

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis , Hemo/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patología , Animales , Modelos Animales de Enfermedad , Eritroblastos/citología , Ferroquelatasa/metabolismo , Prueba de Complementación Genética , Humanos , Concentración de Iones de Hidrógeno , Ratones , Mitocondrias/patología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Oxidación-Reducción , Proteínas/genética , Pez Cebra/metabolismo , Proteína Inhibidora ATPasa
12.
PLoS Pathog ; 10(1): e1003901, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24497831

RESUMEN

Leishmania parasites infect macrophages, cells that play an important role in organismal iron homeostasis. By expressing ferroportin, a membrane protein specialized in iron export, macrophages release iron stored intracellularly into the circulation. Iron is essential for the intracellular replication of Leishmania, but how the parasites compete with the iron export function of their host cell is unknown. Here, we show that infection with Leishmania amazonensis inhibits ferroportin expression in macrophages. In a TLR4-dependent manner, infected macrophages upregulated transcription of hepcidin, a peptide hormone that triggers ferroportin degradation. Parasite replication was inhibited in hepcidin-deficient macrophages and in wild type macrophages overexpressing mutant ferroportin that is resistant to hepcidin-induced degradation. Conversely, intracellular growth was enhanced by exogenously added hepcidin, or by expression of dominant-negative ferroportin. Importantly, dominant-negative ferroportin and macrophages from flatiron mice, a mouse model for human type IV hereditary hemochromatosis, restored the infectivity of mutant parasite strains defective in iron acquisition. Thus, inhibition of ferroportin expression is a specific strategy used by L. amazonensis to inhibit iron export and promote their own intracellular growth.


Asunto(s)
Hierro/metabolismo , Leishmania/metabolismo , Leishmaniasis/metabolismo , Macrófagos/metabolismo , Animales , Transporte Biológico Activo/genética , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Hemocromatosis/genética , Hemocromatosis/metabolismo , Hemocromatosis/parasitología , Hemocromatosis/patología , Hepcidinas/biosíntesis , Hepcidinas/genética , Humanos , Leishmaniasis/genética , Leishmaniasis/patología , Macrófagos/parasitología , Macrófagos/patología , Ratones , Ratones Noqueados , Mutación
13.
Nat Genet ; 39(8): 1025-32, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632513

RESUMEN

We undertook a quantitative trait locus (QTL) analysis in mice to identify modifier genes that might influence the severity of human iron disorders. We identified a strong QTL on mouse chromosome 9 that differentially affected macrophage iron burden in C57BL/10J and SWR/J mice. A C57BL/10J missense allele of an evolutionarily conserved gene, Mon1a, cosegregated with the QTL in congenic mouse lines. We present evidence that Mon1a is involved in trafficking of ferroportin, the major mammalian iron exporter, to the surface of iron-recycling macrophages. Differences in amounts of surface ferroportin correlate with differences in cellular iron content. Mon1a is also important for trafficking of cell-surface and secreted molecules unrelated to iron metabolism, suggesting that it has a fundamental role in the mammalian secretory apparatus.


Asunto(s)
Proteínas Portadoras/genética , Hierro/metabolismo , Macrófagos/metabolismo , Sitios de Carácter Cuantitativo , Animales , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cromosomas de los Mamíferos , Cruzamientos Genéticos , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos , Transporte de Proteínas , ARN Interferente Pequeño
14.
J Biol Chem ; 289(24): 17132-41, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24798331

RESUMEN

Mmt1 and Mmt2 are highly homologous yeast members of the cation diffusion facilitator transporter family localized to mitochondria. Overexpression of MMT1/2 led to changes in cellular metal homeostasis (increased iron sensitivity, decreased cobalt sensitivity, increased sensitivity to copper), oxidant generation, and increased sensitivity to H2O2. The phenotypes due to overexpression of MMT1&2 were similar to that seen in cells with deletions in MRS3 and MRS4, genes that encode the mitochondrial iron importers. Overexpression of MMT1&2 resulted in induction of the low iron transcriptional response, similar to that seen in Δmrs3Δmr4 cells. This low iron transcriptional response was suppressed by deletion of CCC1, the gene that encodes the vacuolar iron importer. Measurement of the activity of the iron-dependent gentisate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans expressed in yeast cytosol, showed that changes in Mmt1/2 levels affected cytosol iron concentration even in the absence of Ccc1. Overexpression of MMT1 resulted in increased cytosolic iron whereas deletion of MMT1/MMT2 led to decreased cytosolic iron. These results support the hypothesis that Mmt1/2 function as mitochondrial iron exporters.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Catión/genética , Citoplasma/metabolismo , Homeostasis , Transporte Iónico , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
J Biol Chem ; 289(11): 7835-43, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24509859

RESUMEN

Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1(+/gt);Irp1(-/-) erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5'-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1(gt/gt) cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1(gt/gt) cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Regulación de la Expresión Génica , Proteína 1 Reguladora de Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Porfirias/metabolismo , Animales , Blastocisto/citología , Diferenciación Celular , Línea Celular Tumoral , Femenino , Genotipo , Células HEK293 , Hemo/química , Humanos , Hierro/química , Proteínas Hierro-Azufre/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , Protoporfirinas/metabolismo , Pez Cebra
16.
Traffic ; 13(1): 108-19, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21985295

RESUMEN

Chediak-Higashi syndrome is an autosomal recessive disorder that affects vesicle morphology. The Chs1/Lyst protein is a member of the BEige And CHediak family of proteins. The absence of Chs1/Lyst gives rise to enlarged lysosomes. Lysosome size is regulated by a balance between vesicle fusion and fission and can be reversibly altered by acidifying the cytoplasm using Acetate Ringer's or by incubating with the drug vacuolin-1. We took advantage of these procedures to determine rates of lysosome fusion and fission in the presence or absence of Chs1/Lyst. Here, we show by microscopy, flow cytometry and in vitro fusion that the absence of the Chs1/Lyst protein does not increase the rate of lysosome fusion. Rather, our data indicate that loss of this protein decreases the rate of lysosome fission. We further show that overexpression of the Chs1/Lyst protein gives rise to a faster rate of lysosome fission. These results indicate that Chs1/Lyst regulates lysosome size by affecting fission.


Asunto(s)
Síndrome de Chediak-Higashi , Lisosomas/ultraestructura , Macrófagos/ultraestructura , Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Células Cultivadas , Síndrome de Chediak-Higashi/metabolismo , Síndrome de Chediak-Higashi/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Citometría de Flujo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas/genética , Proteínas de Transporte Vesicular/genética
17.
J Biol Chem ; 287(30): 25577-88, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22665492

RESUMEN

Mon1a was originally identified as a modifier gene of vesicular traffic, as a mutant Mon1a allele resulted in increased localization of cell surface proteins, whereas reduced levels of Mon1a showed decreased secretory activity. Here we show that Mon1a affects different steps in the secretory pathway including endoplasmic reticulum-to-Golgi traffic. siRNA-dependent reduction of Mon1a levels resulted in a delay in the reformation of the Golgi apparatus after Brefeldin A treatment. Endoglycosidase H treatment of ts045VSVG-GFP confirmed that knockdown of Mon1a delayed endoplasmic reticulum-to-Golgi trafficking. Reductions in Mon1a also resulted in delayed trafficking from Golgi to the plasma membrane. Immunoprecipitation and mass spectrometry analysis showed that Mon1a associates with dynein intermediate chain. Reductions in Mon1a or dynein altered steady state Golgi morphology. Reductions in Mon1a delayed formation of ERGIC-53-positive vesicles, whereas reductions in dynein did not affect vesicle formation. These data provide strong evidence for a role for Mon1a in anterograde trafficking through the secretory apparatus.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Vesículas Secretoras/metabolismo , Animales , Brefeldino A/farmacología , Células COS , Proteínas Portadoras/genética , Chlorocebus aethiops , Dineínas/genética , Dineínas/metabolismo , Retículo Endoplásmico/genética , Glicósido Hidrolasas/farmacología , Aparato de Golgi/genética , Células HeLa , Humanos , Lectinas de Unión a Manosa/genética , Lectinas de Unión a Manosa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Células 3T3 NIH , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Vesículas Secretoras/genética
18.
J Biol Chem ; 287(42): 35709-35721, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22915593

RESUMEN

Yeast respond to increased cytosolic iron by activating the transcription factor Yap5 increasing transcription of CCC1, which encodes a vacuolar iron importer. Using a genetic screen to identify genes involved in Yap5 iron sensing, we discovered that a mutation in SSQ1, which encodes a mitochondrial chaperone involved in iron-sulfur cluster synthesis, prevented expression of Yap5 target genes. We demonstrated that mutation or reduced expression of other genes involved in mitochondrial iron-sulfur cluster synthesis (YFH1, ISU1) prevented induction of the Yap5 response. We took advantage of the iron-dependent catalytic activity of Pseudaminobacter salicylatoxidans gentisate 1,2-dioxygenase expressed in yeast to measure changes in cytosolic iron. We determined that reductions in iron-sulfur cluster synthesis did not affect the activity of cytosolic gentisate 1,2-dioxygenase. We show that loss of activity of the cytosolic iron-sulfur cluster assembly complex proteins or deletion of cytosolic glutaredoxins did not reduce expression of Yap5 target genes. These results suggest that the high iron transcriptional response, as well as the low iron transcriptional response, senses iron-sulfur clusters.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/biosíntesis , Regulación Fúngica de la Expresión Génica/fisiología , Hierro/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo , Transcripción Genética/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Oxidación-Reducción , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
19.
Biochim Biophys Acta ; 1823(9): 1426-33, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22440327

RESUMEN

The distinguishing feature between iron homeostasis in single versus multicellular organisms is the need for multicellular organisms to transfer iron from sites of absorption to sites of utilization and storage. Ferroportin is the only known iron exporter and ferroportin plays an essential role in the export of iron from cells to blood. Ferroportin can be regulated at many different levels including transcriptionally, post-transcriptionally, through mRNA stability and post-translationally, through protein turnover. Additionally, ferroportin may be regulated in both cell-dependent and cell-autonomous fashions. Regulation of ferroportin is critical for iron homeostasis as alterations in ferroportin may result in either iron deficiency or iron overload. This article is part of a Special Issue entitled: Cell Biology of Metals.


Asunto(s)
Proteínas de Transporte de Catión/genética , Cationes Bivalentes/metabolismo , Expresión Génica , Hierro/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de Transporte de Catión/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Hepcidinas , Homeostasis/fisiología , Humanos , Transporte Iónico/genética , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Estabilidad del ARN , Activación Transcripcional
20.
Blood ; 117(20): 5494-502, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21310927

RESUMEN

Mitoferrin1 is 1 of 2 homologous mitochondrial iron transporters and is required for mitochondrial iron delivery in developing erythroid cells. We show that total deletion of Mfrn1 in embryos leads to embryonic lethality. Selective deletion of Mfrn1 in adult hematopoietic tissues leads to severe anemia because of a deficit in erythroblast formation. Deletion of Mfrn1 in hepatocytes has no phenotype or biochemical effect under normal conditions. In the presence of increased porphyrin synthesis, however, deletion of Mfrn1 in hepatocytes results in a decreased ability to convert protoporphyrin IX into heme, leading to protoporphyria, cholestasis, and bridging cirrhosis. Our results show that the activity of mitoferrin1 is required to manage an increase in heme synthesis. The data also show that alterations in heme synthesis within hepatocytes can lead to protoporphyria and hepatotoxicity.


Asunto(s)
Anemia/etiología , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Protoporfiria Eritropoyética/etiología , Anemia/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Pérdida del Embrión/genética , Femenino , Marcación de Gen , Hemo/biosíntesis , Hepatocitos/metabolismo , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Embarazo , Protoporfiria Eritropoyética/genética , Protoporfirinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA