RESUMEN
Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.
Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Teorema de Bayes , Transcriptoma , Regulación Neoplásica de la Expresión GénicaRESUMEN
Germ line variants in the DDX41 gene have been linked to myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) development. However, the risks associated with different variants remain unknown, as do the basis of their leukemogenic properties, impact on steady-state hematopoiesis, and links to other cancers. Here, we investigate the frequency and significance of DDX41 variants in 454 792 United Kingdom Biobank (UKB) participants and identify 452 unique nonsynonymous DNA variants in 3538 (1/129) individuals. Many were novel, and the prevalence of most varied markedly by ancestry. Among the 1059 individuals with germ line pathogenic variants (DDX41-GPV) 34 developed MDS/AML (odds ratio, 12.3 vs noncarriers). Of these, 7 of 218 had start-lost, 22 of 584 had truncating, and 5 of 257 had missense (odds ratios: 12.9, 15.1, and 7.5, respectively). Using multivariate logistic regression, we found significant associations of DDX41-GPV with MDS, AML, and family history of leukemia but not lymphoma, myeloproliferative neoplasms, or other cancers. We also report that DDX41-GPV carriers do not have an increased prevalence of clonal hematopoiesis (CH). In fact, CH was significantly more common before sporadic vs DDX41-mutant MDS/AML, revealing distinct evolutionary paths. Furthermore, somatic mutation rates did not differ between sporadic and DDX41-mutant AML genomes, ruling out genomic instability as a driver of the latter. Finally, we found that higher mean red cell volume (MCV) and somatic DDX41 mutations in blood DNA identify DDX41-GPV carriers at increased MDS/AML risk. Collectively, our findings give new insights into the prevalence and cognate risks associated with DDX41 variants, as well as the clonal evolution and early detection of DDX41-mutant MDS/AML.
Asunto(s)
Deficiencia GATA2 , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Prevalencia , ARN Helicasas DEAD-box/genética , Síndromes Mielodisplásicos/epidemiología , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/genética , ADNRESUMEN
BACKGROUND: 'Benign ethnic neutropenia' (BEN) is a heritable condition characterized by lower neutrophil counts, predominantly observed in individuals of African ancestry, and the genetic basis of BEN remains a subject of extensive research. In this study, we aimed to dissect the genetic architecture underlying neutrophil count variation through a linear-mixed model genome-wide association study (GWAS) in a population of African ancestry (N = 5976). Malaria caused by P. falciparum imposes a tremendous public health burden on people living in sub-Saharan Africa. Individuals living in malaria endemic regions often have a reduced circulating neutrophil count due to BEN, raising the possibility that reduced neutrophil counts modulate severity of malaria in susceptible populations. As a follow-up, we tested this hypothesis by conducting a Mendelian randomization (MR) analysis of neutrophil counts on severe malaria (MalariaGEN, N = 17,056). RESULTS: We carried out a GWAS of neutrophil count in individuals associated to an African continental ancestry group within UK Biobank, identifying 73 loci (r2 = 0.1) and 10 index SNPs (GCTA-COJO loci) associated with neutrophil count, including previously unknown rare loci regulating neutrophil count in a non-European population. BOLT-LMM was reliable when conducted in a non-European population, and additional covariates added to the model did not largely alter the results of the top loci or index SNPs. The two-sample bi-directional MR analysis between neutrophil count and severe malaria showed the greatest evidence for an effect between neutrophil count and severe anaemia, although the confidence intervals crossed the null. CONCLUSION: Our GWAS of neutrophil count revealed unique loci present in individuals of African ancestry. We note that a small sample-size reduced our power to identify variants with low allele frequencies and/or low effect sizes in our GWAS. Our work highlights the need for conducting large-scale biobank studies in Africa and for further exploring the link between neutrophils and severe malaria.
Asunto(s)
Estudio de Asociación del Genoma Completo , Malaria , Humanos , Estudio de Asociación del Genoma Completo/métodos , Neutrófilos , Población Negra/genética , Malaria/epidemiología , Malaria/genética , Frecuencia de los Genes , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la EnfermedadRESUMEN
Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of clonal mosaicism1-5, yet our knowledge of the causes and consequences of this is limited. Here, using a computational approach, we estimate that 20% of the male population represented in the UK Biobank study (n = 205,011) has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 757,114 men of European and Japanese ancestry. These loci highlight genes that are involved in cell-cycle regulation and cancer susceptibility, as well as somatic drivers of tumour growth and targets of cancer therapy. We demonstrate that genetic susceptibility to LOY is associated with non-haematological effects on health in both men and women, which supports the hypothesis that clonal haematopoiesis is a biomarker of genomic instability in other tissues. Single-cell RNA sequencing identifies dysregulated expression of autosomal genes in leukocytes with LOY and provides insights into why clonal expansion of these cells may occur. Collectively, these data highlight the value of studying clonal mosaicism to uncover fundamental mechanisms that underlie cancer and other ageing-related diseases.
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Y/genética , Predisposición Genética a la Enfermedad/genética , Inestabilidad Genómica/genética , Leucocitos/patología , Mosaicismo , Adulto , Anciano , Biología Computacional , Bases de Datos Genéticas , Femenino , Marcadores Genéticos/genética , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/genética , Reino UnidoRESUMEN
Morning-preference chronotype has been found to be protective against breast and prostate cancer. Sex hormones have been implicated in relation to chronotype and the development of both cancers. This study aimed to assess whether sex hormones confound or mediate the effect of chronotype on breast and prostate cancer using a Mendelian Randomization (MR) framework. Genetic variants associated with chronotype and sex hormones (total testosterone, bioavailable testosterone, sex hormone binding globulin, and oestradiol) (p<5×10-8) were obtained from published genome-wide association studies (n≤244,207 females and n≤205,527 males). These variants were used to investigate causal relationships with breast (nCases/nControls = 133,384/113,789) and prostate (nCases/nControls = 79,148/61,106) cancer using univariable, bidirectional and multivariable MR. In females, we found evidence for: I) Reduced risk of breast cancer per category increase in morning-preference (OR = 0.93, 95% CI:0. 88, 1.00); II) Increased risk of breast cancer per SD increase in bioavailable testosterone (OR = 1.10, 95% CI: 1.01, 1.19) and total testosterone (OR = 1.15, 95% CI:1.07, 1.23); III) Bidirectional effects between morning-preference and both bioavailable and total testosterone (e.g. mean SD difference in bioavailable testosterone = -0.08, 95% CI:-0.12, -0.05 per category increase in morning-preference vs difference in morning-preference category = -0.04, 95% CI: -0.08, 0.00 per SD increase in bioavailable testosterone). In males, we found evidence for: I) Reduced risk of prostate cancer per category increase in morning-preference (OR = 0.90, 95% CI: 0.83, 0.97) and II) Increased risk of prostate cancer per SD increase in bioavailable testosterone (OR = 1.22, 95% CI: 1.08, 1.37). No bidirectional effects were found between morning-preference and testosterone in males. While testosterone levels were causally implicated with both chronotype and cancer, there was inconsistent evidence for testosterone as a mediator of the relationship. The protective effect of morning-preference on both breast and prostate cancer is clinically interesting, although it may be difficult to effectively modify chronotype. Further studies are needed to investigate other potentially modifiable intermediates.
Asunto(s)
Neoplasias de la Mama/genética , Hormonas Esteroides Gonadales/metabolismo , Análisis de la Aleatorización Mendeliana/métodos , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Fenómenos Cronobiológicos , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Factores de RiesgoRESUMEN
Morning chronotype has been associated with a reduced risk of prostate and breast cancer. However, few studies have examined whether chronotype is associated with digestive tract cancer risk. We conducted a Mendelian randomization (MR) study to assess the associations of chronotype with major digestive tract cancers. A total of 317 independent genetic variants associated with chronotype at the genome-wide significance level (P < 5 × 10-8 ) were used as instrumental variables from a genome-wide meta-analysis of 449 734 individuals. Summary-level data on overall and six digestive tract cancers, including esophageal, stomach, liver, biliary tract, pancreatic and colorectal cancers, were obtained from the UK Biobank (11 952 cases) and FinnGen (7638 cases) study. Genetic liability to morning chronotype was associated with reduced risk of overall digestive tract cancer and cancers of stomach, biliary tract and colorectum in UK Biobank. The associations for the overall digestive tract, stomach and colorectal cancers were directionally replicated in FinnGen. In the meta-analysis of the two sources, genetic liability to morning chronotype was associated with a decreased risk of overall digestive tract cancer (odds ratio [OR] 0.94, 95% confidence interval [CI]: 0.90-0.98), stomach cancer (OR 0.84, 95% CI: 0.73-0.97) and colorectal cancer (OR 0.92, 95% CI: 0.87-0.98), but not with the other studied cancers. The associations were consistent in multivariable MR analysis with adjustment for genetically predicted sleep duration, short sleep, insomnia and body mass index. The study provided MR evidence of inverse associations of morning chronotype with digestive tract cancer, particularly stomach and colorectal cancers.
Asunto(s)
Neoplasias Colorrectales , Neoplasias Gastrointestinales , Masculino , Humanos , Cronotipo , Análisis de la Aleatorización Mendeliana , Neoplasias Gastrointestinales/epidemiología , Neoplasias Gastrointestinales/genética , Neoplasias Colorrectales/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Factores de RiesgoRESUMEN
Breast cancer genome-wide association studies (GWASs) have identified 150 genomic risk regions containing more than 13,000 credible causal variants (CCVs). The CCVs are predominantly noncoding and enriched in regulatory elements. However, the genes underlying breast cancer risk associations are largely unknown. Here, we used genetic colocalization analysis to identify loci at which gene expression could potentially explain breast cancer risk phenotypes. Using data from the Breast Cancer Association Consortium (BCAC) and quantitative trait loci (QTL) from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Project (TCGA), we identify shared genetic relationships and reveal novel associations between cancer phenotypes and effector genes. Seventeen genes, including NTN4, were identified as potential mediators of breast cancer risk. For NTN4, we showed the rs61938093 CCV at this region was located within an enhancer element that physically interacts with the NTN4 promoter, and the risk allele reduced NTN4 promoter activity. Furthermore, knockdown of NTN4 in breast cells increased cell proliferation in vitro and tumor growth in vivo. These data provide evidence linking risk-associated variation to genes that may contribute to breast cancer predisposition.
Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas de Neoplasias/genética , Netrinas/genética , Alelos , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Elementos de Facilitación Genéticos , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica/métodos , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Netrinas/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo , RiesgoRESUMEN
Increased adiposity is a known risk factor for endometrial cancer (EC). This study aimed to disentangle the separate causal roles of child and adult adiposity on EC risk in adults, including endometrioid and non-endometrioid histological subtypes using multivariable Mendelian randomisation. These analyses employed genetic associations derived from UK Biobank as proxies for child and adult body size in 12,906 cases and 108,979 controls that participated in the Endometrial Cancer Association Consortium. In multivariable analyses, adult body size increased overall EC (OR 2.30, 95% CI 1.73-3.06) and endometrioid EC risk (OR 2.28, 95% CI 1.65-3.16), while child body size had minimal effect. In contrast, child body size (OR 2.26, 95% CI 1.03-4.99) but not adult body size increased non-endometrioid EC risk. As such, child adiposity has an indirect effect on endometrioid EC risk that is mediated by adult adiposity but has a direct effect on non-endometrioid EC risk that is independent of adult adiposity. These novel findings indicate that interventions targeting adiposity during distinct periods in life have a critical role in preventing subtype-specific EC.
Asunto(s)
Adiposidad , Neoplasias Endometriales , Femenino , Humanos , Niño , Adiposidad/genética , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/genética , Neoplasias Endometriales/epidemiología , Neoplasias Endometriales/genética , Factores de Riesgo , Endometrio/patología , Análisis de la Aleatorización Mendeliana , Índice de Masa CorporalRESUMEN
Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.
Asunto(s)
Neoplasias de la Mama/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Asia/etnología , Pueblo Asiatico/genética , Sitios de Unión/genética , Neoplasias de la Mama/diagnóstico , Simulación por Computador , Europa (Continente)/etnología , Femenino , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Secuencias Reguladoras de Ácidos Nucleicos , Medición de Riesgo , Factores de Transcripción/metabolismo , Población Blanca/genéticaRESUMEN
BACKGROUND: Breast cancer (BC) has the highest cancer incidence and mortality in women worldwide. Observational epidemiological studies suggest a positive association between testosterone, estradiol, dehydroepiandrosterone sulphate (DHEAS) and other sex steroid hormones with postmenopausal BC. We used a two-sample Mendelian randomization analysis to investigate this association. METHODS: Genetic instruments for nine sex steroid hormones and sex hormone-binding globulin (SHBG) were obtained from genome-wide association studies (GWAS) of UK Biobank (total testosterone (TT) N: 230,454, bioavailable testosterone (BT) N: 188,507 and SHBG N: 189,473), The United Kingdom Household Longitudinal Study (DHEAS N: 9722), the LIFE-Adult and LIFE-Heart cohorts (estradiol N: 2607, androstenedione N: 711, aldosterone N: 685, progesterone N: 1259 and 17-hydroxyprogesterone N: 711) and the CORtisol NETwork (CORNET) consortium (cortisol N: 25,314). Outcome GWAS summary statistics were obtained from the Breast Cancer Association Consortium (BCAC) for overall BC risk (N: 122,977 cases and 105,974 controls) and subtype-specific analyses. RESULTS: We found that a standard deviation (SD) increase in TT, BT and estradiol increased the risk of overall BC (OR 1.14, 95% CI 1.09-1.21, OR 1.19, 95% CI 1.07-1.33 and OR 1.03, 95% CI 1.01-1.06, respectively) and ER + BC (OR 1.19, 95% CI 1.12-1.27, OR 1.25, 95% CI 1.11-1.40 and OR 1.06, 95% CI 1.03-1.09, respectively). An SD increase in DHEAS also increased ER + BC risk (OR 1.09, 95% CI 1.03-1.16). Subtype-specific analyses showed similar associations with ER+ expressing subtypes: luminal A-like BC, luminal B-like BC and luminal B/HER2-negative-like BC. CONCLUSIONS: TT, BT, DHEAS and estradiol increase the risk of ER+ type BCs similar to observational studies. Understanding the role of sex steroid hormones in BC risk, particularly subtype-specific risks, highlights the potential importance of attempts to modify and/or monitor hormone levels in order to prevent BC.
Asunto(s)
Neoplasias de la Mama , Globulina de Unión a Hormona Sexual , 17-alfa-Hidroxiprogesterona , Adulto , Aldosterona , Androstenodiona , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Sulfato de Deshidroepiandrosterona , Estradiol , Femenino , Estudio de Asociación del Genoma Completo , Hormonas Esteroides Gonadales , Humanos , Hidrocortisona , Estudios Longitudinales , Análisis de la Aleatorización Mendeliana , Progesterona , TestosteronaRESUMEN
Evidence on the association between selenium and cancer risk is inconclusive. We conducted a Mendelian randomization study to examine the associations of selenium levels with 22 site-specific cancers and any cancer. Single nucleotide polymorphisms (SNPs) strongly associated with toenail and blood (TAB) and blood selenium levels in mild linkage disequilibrium (r2 < .3) were used as instrumental variables. Genetic associations of selenium-associated SNPs with cancer were obtained from the UK Biobank including a total of 59 647 cancer cases and 307 914 controls. Associations with P < .1 in UK Biobank were tested for replication in the FinnGen consortium comprising more than 180 000 individuals. The inverse-variance weighted method accounting for linkage disequilibrium was used to estimate the associations. Genetically predicted TAB selenium levels were not associated with the risk of the 22 site-specific cancers or any cancer (all 22 site-specific cancers). Similarly, we observed no strong association for genetically predicted blood selenium levels. However, genetically predicted blood selenium levels showed suggestive associations with risk of kidney cancer (odds ratio [OR] per one-unit increase in log-transformed levels: 0.83; 95% confidence interval [CI]: 0.67-1.03) and multiple myeloma (OR: 1.40; 95% CI: 1.02-1.93). The same direction of association for kidney cancer but not for multiple myeloma was observed in FinnGen. In the metaanalysis of UK Biobank and FinnGen, the OR of kidney cancer was 0.83 (95% CI: 0.69-1.00). Our study suggests that high selenium status may not prevent cancer development. The associations for kidney cancer and multiple myeloma need to be verified in well-powered studies.
Asunto(s)
Neoplasias Renales/inducido químicamente , Análisis de la Aleatorización Mendeliana/métodos , Mieloma Múltiple/inducido químicamente , Selenio/efectos adversos , Humanos , Uñas/química , Polimorfismo de Nucleótido Simple , Selenio/análisis , Selenio/sangreRESUMEN
Studies of sleep duration in relation to the risk of site-specific cancers other than breast cancer are scarce. Furthermore, the available results are inconclusive and the causality remains unclear. We aimed to investigate the potential causal associations of sleep duration with overall and site-specific cancers using the Mendelian randomization (MR) design. Single-nucleotide polymorphisms associated with the sleep traits identified from a genome-wide association study were used as instrumental variables to estimate the association with overall cancer and 22 site-specific cancers among 367 586 UK Biobank participants. A replication analysis was performed using data from the FinnGen consortium (up to 121 579 individuals). There was suggestive evidence that genetic liability to short-sleep duration was associated with higher odds of cancers of the stomach (odds ratio [OR], 2.22; 95% confidence interval [CI], 1.15-4.30; P = .018), pancreas (OR, 2.18; 95% CI, 1.32-3.62; P = .002) and colorectum (OR, 1.48; 95% CI, 1.12-1.95; P = .006), but with lower odds of multiple myeloma (OR, 0.47; 95% CI, 0.22-0.99; P = .047). Suggestive evidence of association of genetic liability to long-sleep duration with lower odds of pancreatic cancer (OR, 0.44; 95% CI, 0.25-0.79; P = .005) and kidney cancer (OR, 0.44; 95% CI, 0.21-0.90; P = .025) was observed. However, none of these associations passed the multiple comparison threshold and two-sample MR analysis using FinnGen data did not confirm these findings. In conclusion, this MR study does not provide strong evidence to support causal associations of sleep duration with risk of overall and site-specific cancers. Further MR studies are required.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Análisis de la Aleatorización Mendeliana/métodos , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Sueño/genética , Adulto , Anciano , Bancos de Muestras Biológicas/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/clasificación , Oportunidad Relativa , Factores de Riesgo , Factores de Tiempo , Reino UnidoRESUMEN
BACKGROUND: Evidence for the impact of body size and composition on cancer risk is limited. This mendelian randomisation (MR) study investigates evidence supporting causal relationships of body mass index (BMI), fat mass index (FMI), fat-free mass index (FFMI), and height with cancer risk. METHODS AND FINDINGS: Single nucleotide polymorphisms (SNPs) were used as instrumental variables for BMI (312 SNPs), FMI (577 SNPs), FFMI (577 SNPs), and height (293 SNPs). Associations of the genetic variants with 22 site-specific cancers and overall cancer were estimated in 367,561 individuals from the UK Biobank (UKBB) and with lung, breast, ovarian, uterine, and prostate cancer in large international consortia. In the UKBB, genetically predicted BMI was positively associated with overall cancer (odds ratio [OR] per 1 kg/m2 increase 1.01, 95% confidence interval [CI] 1.00-1.02; p = 0.043); several digestive system cancers: stomach (OR 1.13, 95% CI 1.06-1.21; p < 0.001), esophagus (OR 1.10, 95% CI 1.03, 1.17; p = 0.003), liver (OR 1.13, 95% CI 1.03-1.25; p = 0.012), and pancreas (OR 1.06, 95% CI 1.01-1.12; p = 0.016); and lung cancer (OR 1.08, 95% CI 1.04-1.12; p < 0.001). For sex-specific cancers, genetically predicted elevated BMI was associated with an increased risk of uterine cancer (OR 1.10, 95% CI 1.05-1.15; p < 0.001) and with a lower risk of prostate cancer (OR 0.97, 95% CI 0.94-0.99; p = 0.009). When dividing cancers into digestive system versus non-digestive system, genetically predicted BMI was positively associated with digestive system cancers (OR 1.04, 95% CI 1.02-1.06; p < 0.001) but not with non-digestive system cancers (OR 1.01, 95% CI 0.99-1.02; p = 0.369). Genetically predicted FMI was positively associated with liver, pancreatic, and lung cancer and inversely associated with melanoma and prostate cancer. Genetically predicted FFMI was positively associated with non-Hodgkin lymphoma and melanoma. Genetically predicted height was associated with increased risk of overall cancer (OR per 1 standard deviation increase 1.09; 95% CI 1.05-1.12; p < 0.001) and multiple site-specific cancers. Similar results were observed in analyses using the weighted median and MR-Egger methods. Results based on consortium data confirmed the positive associations between BMI and lung and uterine cancer risk as well as the inverse association between BMI and prostate cancer, and, additionally, showed an inverse association between genetically predicted BMI and breast cancer. The main limitations are the assumption that genetic associations with cancer outcomes are mediated via the proposed risk factors and that estimates for some lower frequency cancer types are subject to low precision. CONCLUSIONS: Our results show that the evidence for BMI as a causal risk factor for cancer is mixed. We find that BMI has a consistent causal role in increasing risk of digestive system cancers and a role for sex-specific cancers with inconsistent directions of effect. In contrast, increased height appears to have a consistent risk-increasing effect on overall and site-specific cancers.
Asunto(s)
Composición Corporal , Tamaño Corporal , Neoplasias/epidemiología , Obesidad/epidemiología , Anciano , Índice de Masa Corporal , Femenino , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Neoplasias/genética , Obesidad/genética , Reino Unido/epidemiologíaRESUMEN
BACKGROUND: Cortisol's immunosuppressive, obesogenic, and hyperglycaemic effects suggest that it may play a role in cancer development. However, whether cortisol increases cancer risk is not known. We investigated the potential causal association between plasma cortisol and risk of overall and common site-specific cancers using Mendelian randomisation. METHODS: Three genetic variants associated with morning plasma cortisol levels at the genome-wide significance level (P < 5 × 10-8) in the Cortisol Network consortium were used as genetic instruments. Summary-level genome-wide association study data for the cancer outcomes were obtained from large-scale cancer consortia, the UK Biobank, and the FinnGen consortium. Two-sample Mendelian randomisation analyses were performed using the fixed-effects inverse-variance weighted method. Estimates across data sources were combined using meta-analysis. RESULTS: A standard deviation increase in genetically predicted plasma cortisol was associated with increased risk of endometrial cancer (odds ratio 1.50, 95% confidence interval 1.13-1.99; P = 0.005). There was no significant association between genetically predicted plasma cortisol and risk of other common site-specific cancers, including breast, ovarian, prostate, colorectal, lung, or malignant skin cancer, or overall cancer. CONCLUSIONS: These results indicate that elevated plasma cortisol levels may increase the risk of endometrial cancer but not other cancers. The mechanism by which this occurs remains to be investigated.
Asunto(s)
Hidrocortisona/sangre , Análisis de la Aleatorización Mendeliana/métodos , Neoplasias/genética , Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias/sangre , Polimorfismo de Nucleótido Simple , Reino UnidoRESUMEN
BACKGROUND: Folate, vitamin B6 and vitamin B12 have been associated with digestive system cancers. We conducted a two-sample Mendelian randomisation study to assess the causality of these associations. METHODS: Two, one and 14 independent single nucleotide polymorphisms associated with serum folate, vitamin B6 and vitamin B12 at the genome-wide significance threshold were selected as genetic instruments. Summary-level data for the associations of the vitamin-associated genetic variants with cancer were obtained from the UK Biobank study including 367,561 individuals and FinnGen consortium comprising up to 176,899 participants. RESULTS: Genetically predicted folate and vitamin B6 concentrations were not associated with overall cancer, overall digestive system cancer or oesophageal, gastric, colorectal or pancreatic cancer. Genetically predicted vitamin B12 concentrations were positively associated with overall digestive system cancer (ORSD, 1.12; 95% CI 1.04, 1.21, p = 0.003) and colorectal cancer (ORSD 1.16; 95% CI 1.06, 1.26, p = 0.001) in UK Biobank. Results for colorectal cancer were consistent in FinnGen and the combined ORSD was 1.16 (95% CI 1.08, 1.25, p < 0.001). There was no association of genetically predicted vitamin B12 with any other site-specific digestive system cancers or overall cancer. CONCLUSIONS: These results provide evidence to suggest that elevated serum vitamin B12 concentrations are associated with colorectal cancer.
Asunto(s)
Neoplasias del Sistema Digestivo/sangre , Neoplasias del Sistema Digestivo/epidemiología , Polimorfismo de Nucleótido Simple , Complejo Vitamínico B/sangre , Adulto , Anemia Perniciosa/sangre , Anemia Perniciosa/epidemiología , Anemia Perniciosa/genética , Estudios de Casos y Controles , Neoplasias del Sistema Digestivo/diagnóstico , Neoplasias del Sistema Digestivo/genética , Femenino , Ácido Fólico/sangre , Ácido Fólico/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Factores de Riesgo , Suecia/epidemiología , Reino Unido/epidemiología , Vitamina B 12/sangre , Vitamina B 12/genética , Vitamina B 6/sangre , Vitamina B 6/genética , Complejo Vitamínico B/genética , Deficiencia de Vitamina B/sangre , Deficiencia de Vitamina B/epidemiología , Deficiencia de Vitamina B/genéticaRESUMEN
OBJECTIVE: Most women with epithelial ovarian cancer (EOC) are diagnosed after the disease has metastasized and survival in this group remains poor. Circulating proteins associated with the risk of developing EOC have the potential to serve as biomarkers for early detection and diagnosis. We integrated large-scale genomic and proteomic data to identify novel plasma proteins associated with EOC risk. METHODS: We used the germline genetic variants most strongly associated (P <1.5 × 10-11) with plasma levels of 1329 proteins in 3301 healthy individuals from the INTERVAL study to predict circulating levels of these proteins in 22,406 EOC cases and 40,941 controls from the Ovarian Cancer Association Consortium (OCAC). Association testing was performed by weighting the beta coefficients and standard errors for EOC risk from the OCAC study by the inverse of the beta coefficients from INTERVAL. RESULTS: We identified 26 proteins whose genetically predicted circulating levels were associated with EOC risk at false discovery rate < 0.05. The 26 proteins included MFAP2, SEMG2, DLK1, and NTNG1 and a group of 22 proteins whose plasma levels were predicted by variants at chromosome 9q34.2. All 26 protein association signals identified were driven by association with the high-grade serous histotype that comprised 58% of the EOC cases in OCAC. Regional genomic plots confirmed overlap of the genetic association signal underlying both plasma protein level and EOC risk for the 26 proteins. Pathway analysis identified enrichment of seven biological pathways among the 26 proteins (Padjusted <0.05), highlighting roles for Focal Adhesion-PI3K-Akt-mTOR and Notch signaling. CONCLUSION: The identified proteins further illuminate the etiology of EOC and represent promising new EOC biomarkers for targeted validation by studies involving direct measurement of plasma proteins in EOC patient cohorts.
Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Epitelial de Ovario/epidemiología , Neoplasias Ováricas/epidemiología , Biomarcadores de Tumor/genética , Carcinoma Epitelial de Ovario/sangre , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Estudios de Casos y Controles , Inglaterra/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Mutación de Línea Germinal , Voluntarios Sanos , Humanos , Invasividad Neoplásica/genética , Neoplasias Ováricas/sangre , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Polimorfismo de Nucleótido Simple , Medición de Riesgo/métodosRESUMEN
Whether thyroid dysfunction plays a causal role in the development of cancer remains inconclusive. We conducted a two-sample Mendelian randomization study to investigate the associations between genetic predisposition to thyroid dysfunction and 22 site-specific cancers. Single-nucleotide polymorphisms associated with four traits of thyroid function were selected from a genome-wide association meta-analysis with up to 72,167 European-descent individuals. Summary-level data for breast cancer and 21 other cancers were extracted from the Breast Cancer Association Consortium (122,977 breast cancer cases and 105,974 controls) and UK Biobank (367,643 individuals). For breast cancer, a meta-analysis was performed using data from both sources. Genetically predicted thyroid dysfunction was associated with breast cancer, with similar patterns of associations in the Breast Cancer Association Consortium and UK Biobank. The combined odds ratios of breast cancer were 0.94 (0.91-0.98; p = 0.007) per genetically predicted one standard deviation increase in TSH levels, 0.96 (0.91-1.00; p = 0.053) for genetic predisposition to hypothyroidism, 1.04 (1.01-1.07; p = 0.005) for genetic predisposition to hyperthyroidism and 1.07 (1.02-1.12; p = 0.003) per genetically predicted one standard deviation increase in free thyroxine levels. Genetically predicted TSH levels and hypothyroidism were inversely with thyroid cancer; the odds ratios were 0.47 (0.30-0.73; p = 0.001) and 0.70 (0.51-0.98; p = 0.038), respectively. Our study provides evidence of a causal association between thyroid dysfunction and breast cancer (mainly ER-positive tumors) risk. The role of TSH and hypothyroidism for thyroid cancer and the associations between thyroid dysfunction and other cancers need further exploration.
Asunto(s)
Neoplasias de la Mama/epidemiología , Hipertiroidismo/epidemiología , Hipotiroidismo/epidemiología , Análisis de la Aleatorización Mendeliana/métodos , Neoplasias de la Tiroides/epidemiología , Bancos de Muestras Biológicas , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Femenino , Humanos , Hipertiroidismo/metabolismo , Hipotiroidismo/metabolismo , Masculino , Polimorfismo de Nucleótido Simple , Pruebas de Función de la Tiroides , Glándula Tiroides/fisiología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/fisiopatología , Tirotropina/metabolismoRESUMEN
BACKGROUND: Smoking is a well-established cause of lung cancer and there is strong evidence that smoking also increases the risk of several other cancers. Alcohol consumption has been inconsistently associated with cancer risk in observational studies. This mendelian randomisation (MR) study sought to investigate associations in support of a causal relationship between smoking and alcohol consumption and 19 site-specific cancers. METHODS AND FINDINGS: We used summary-level data for genetic variants associated with smoking initiation (ever smoked regularly) and alcohol consumption, and the corresponding associations with lung, breast, ovarian, and prostate cancer from genome-wide association studies consortia, including participants of European ancestry. We additionally estimated genetic associations with 19 site-specific cancers among 367,643 individuals of European descent in UK Biobank who were 37 to 73 years of age when recruited from 2006 to 2010. Associations were considered statistically significant at a Bonferroni corrected p-value below 0.0013. Genetic predisposition to smoking initiation was associated with statistically significant higher odds of lung cancer in the International Lung Cancer Consortium (odds ratio [OR] 1.80; 95% confidence interval [CI] 1.59-2.03; p = 2.26 × 10-21) and UK Biobank (OR 2.26; 95% CI 1.92-2.65; p = 1.17 × 10-22). Additionally, genetic predisposition to smoking was associated with statistically significant higher odds of cancer of the oesophagus (OR 1.83; 95% CI 1.34-2.49; p = 1.31 × 10-4), cervix (OR 1.55; 95% CI 1.27-1.88; p = 1.24 × 10-5), and bladder (OR 1.40; 95% CI 1.92-2.65; p = 9.40 × 10-5) and with statistically nonsignificant higher odds of head and neck (OR 1.40; 95% CI 1.13-1.74; p = 0.002) and stomach cancer (OR 1.46; 95% CI 1.05-2.03; p = 0.024). In contrast, there was an inverse association between genetic predisposition to smoking and prostate cancer in the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium (OR 0.90; 95% CI 0.83-0.98; p = 0.011) and in UK Biobank (OR 0.90; 95% CI 0.80-1.02; p = 0.104), but the associations did not reach statistical significance. We found no statistically significant association between genetically predicted alcohol consumption and overall cancer (n = 75,037 cases; OR 0.95; 95% CI 0.84-1.07; p = 0.376). Genetically predicted alcohol consumption was statistically significantly associated with lung cancer in the International Lung Cancer Consortium (OR 1.94; 95% CI 1.41-2.68; p = 4.68 × 10-5) but not in UK Biobank (OR 1.12; 95% CI 0.65-1.93; p = 0.686). There was no statistically significant association between alcohol consumption and any other site-specific cancer. The main limitation of this study is that precision was low in some analyses, particularly for analyses of alcohol consumption and site-specific cancers. CONCLUSIONS: Our findings support the well-established relationship between smoking and lung cancer and suggest that smoking may also be a risk factor for cancer of the head and neck, oesophagus, stomach, cervix, and bladder. We found no evidence supporting a relationship between alcohol consumption and overall or site-specific cancer risk.
Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Análisis de la Aleatorización Mendeliana/métodos , Neoplasias/etiología , Fumar/genética , Bancos de Muestras Biológicas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Reino Unido , Población Blanca/genéticaRESUMEN
BACKGROUND: Observational studies have shown that milk consumption is inversely associated with colorectal, bladder, and breast cancer risk, but positively associated with prostate cancer. However, whether the associations reflect causality remains debatable. We investigated the potential causal associations of milk consumption with the risk of colorectal, bladder, breast, and prostate cancer using a genetic variant near the LCT gene as proxy for milk consumption. METHODS: We obtained genetic association estimates for cancer from the UK Biobank (n = 367,643 women and men), FinnGen consortium (n = 135,638 women and men), Breast Cancer Association Consortium (n = 228,951 women), and Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium (n = 140,254 men). Milk consumption was proxied by a genetic variant (rs4988235 or rs182549) upstream of the gene encoding lactase, which catalyzes the breakdown of lactose. RESULTS: Genetically proxied milk consumption was associated with a reduced risk of colorectal cancer. The odds ratio (OR) for each additional milk intake increasing allele was 0.95 (95% confidence interval [CI] 0.91-0.99; P = 0.009). There was no overall association of genetically predicted milk consumption with bladder (OR 0.99; 95% CI 0.94-1.05; P = 0.836), breast (OR 1.01; 95% CI 1.00-1.02; P = 0.113), and prostate cancer (OR 1.01; 95% CI 0.99-1.02; P = 0.389), but a positive association with prostate cancer was observed in the FinnGen consortium (OR 1.07; 95% CI 1.01-1.13; P = 0.026). CONCLUSIONS: Our findings strengthen the evidence for a protective role of milk consumption on colorectal cancer risk. There was no or limited evidence that milk consumption affects the risk of bladder, breast, and prostate cancer.