Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Physiol Plant ; 2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33713449

RESUMEN

Contaminations of heavy metals such as lead (Pb) and cadmium (Cd) in medicinal plants (MPs) not only restrict their safe consumption due to health hazards but also lower their productivity. Biochar amendments in the soil are supposed to immobilize the toxic metals, improve the soil quality and agricultural productivity. However, the impact of biochar on growth attributes, metal accumulation, pharmacologically active compounds of MPs, and health risk is less explored. An experiment was performed on three medicinal plants (Bacopa monnieri (L.), Andrographis paniculata (Burmf.) Nees, and Withaniasomnifera (L.)) grown in a greenhouse in soil co-contaminated with Pb and Cd (at two concentrations) without and with biochar amendments (2 and 4% application rates). The fractionation of Pb and Cd, plant growth parameters, stress enzymes, photosynthetic capacity, pharmacologically active compounds, nutrient content, uptake and translocation of metals, antioxidant activities, and metabolite content were examined in the three MPs. The accumulation of Pb and Cd varied from 3.25-228 mg kg1 and 1.29-20.2 mg kg-1 , respectively, in the three MPs, while it was reduced to 0.08-18 mg kg-1 and 0.03-6.05 mg kg-1 upon biochar treatments. Plants grown in Pb and Cd co-contaminated soil had reduced plant biomass (5-50% depending on the species) compared to control and a deleterious effect on photosynthetic attributes and protein content. However, biochar amendments significantly improved plant biomass (21-175%), as well as photosynthesis attributes, chlorophyll, and protein contents. Biochar amendments in Pb and Cd co-contaminated soil significantly reduced the health hazard quotient (HQ) estimated for the consumption of these medicinal herbs grown on metal-rich soil. An enhancement in secondary metabolite content and antioxidant properties was also observed upon biochar treatments. These multiple beneficial effects of biochar supplementation in Pb and Cd co-contaminated soil suggested that a biochar amendment is a sustainable approach for the safe cultivation of MPs. This article is protected by copyright. All rights reserved.

2.
Ecotoxicol Environ Saf ; 172: 411-422, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30735973

RESUMEN

Immobilization of cadmium (Cd) and lead (Pb) along with the alleviation of their phytotoxicity in Mentha arvensis by biochar was examined in this investigation. A greenhouse experiment was executed to evaluate the effect of biochar (BC) amended Cd and Pb spiked soil on their immobilization and uptake, plant growth, photosynthetic attributes (total chlorophyll, photosynthetic rate, transpiration rate, and stomatal activity) and oxidative enzymes (guaiacol peroxidase: POD; catalase: CAT and superoxide dismutase: SOD). In the present study, the photosynthetic attributes showed that BC significantly improved the total chlorophyll, photosynthetic, transpiration rates, and stomatal activity in the plants. The incorporation of BC in soil increase the Pb and Cd tolerance in M. arvensis vis-à-vis improved the biomass yield and nutrient intake. In addition, biochar has also reduced the POD, CAT, and SOD in the plant as well as improved the soil pH and enzymatic activities. Overall, BC immobilized the Cd and Pb in soil by providing the binding site to the metals and reduced the phytotoxicity in M. arvensis. However, large-scale field trials of BC are required for safe cultivation of M. arvensis which is known for its phytopharmaceuticals importance.


Asunto(s)
Cadmio/análisis , Carbón Orgánico/química , Plomo/análisis , Mentha/efectos de los fármacos , Biomasa , Catalasa/metabolismo , Mentha/metabolismo , Mentol/análisis , Aceites Volátiles/análisis , Peroxidasa/metabolismo , Fotosíntesis/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/análisis , Superóxido Dismutasa/metabolismo
3.
Crit Rev Food Sci Nutr ; 57(14): 2996-3034, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26478953

RESUMEN

Tea (Camellia sinensis L.) is a perennial acidophilic crop, and known to be a nonalcoholic stimulating beverage that is most widely consumed after water. The aim of this review paper is to provide a detailed documentation of selected micronutrient contents, viz. boron (B), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), and zinc (Zn) in made tea and tea infusion. Available data from the literature were used to calculate human health aspect associated with the consumption of tea infusion. A wide range of micronutrients reported in both made tea and tea infusion could be the major sources of micronutrients for human. The content of B, Co, Cu, Fe, Mn, Mo, and Zn in made tea are ranged from 3.04 to 58.44 µg g-1, below detectable limit (BDL) to 122.4 µg g-1, BDL to 602 µg g-1, 0.275 to 13,040 µg g-1, 0.004 to 15,866 µg g-1, 0.04 to 570.80 µg g-1 and 0.01 to 1120 µg g-1, respectively. Only 3.2 µg L-1 to 7.25 mg L-1, 0.01 µg L-1 to 7 mg L-1, 3.80 µg L-1 to 6.13 mg L-1, 135.59 µg L-1 -11.05 mg L-1, 0.05 µg L-1 to 1980.34 mg L-1, 0.012 to 3.78 µg L-1, and 1.12 µg L-1 to 2.32 µg L-1 of B, Co, Cu, Fe, Mn, Mo, and Zn, respectively, are found in tea infusion which are lower than the prescribed limit of micronutrients in drinking water by World Health Organization. Furthermore, micronutrient contents in tea infusion depend on infusion procedure as well as on the instrument used for analysis. The proportion of micronutrients found in different tea types are 1.0-88.9% for B, 10-60% for Co, 2.0-97.8% for Cu, 67.8-89.9% for Fe, 71.0-87.4% for Mn, 13.3-34% for Mo, and 34.9-83% for Zn. From the results, it can also be concluded that consumption of three cups of tea infusion per day does not have any adverse effect on human health with respect to the referred micronutrients rather got beneficial effects to human.


Asunto(s)
Camellia sinensis , Micronutrientes/análisis , Té/química , Cobalto/análisis , Cobre/análisis , Humanos , Hierro/análisis , Manganeso/análisis , Molibdeno/análisis , Zinc/análisis
4.
Environ Monit Assess ; 188(12): 670, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27848112

RESUMEN

Two alkaline soils collected from the surface horizon (0-15 cm) of two agricultural fields Lakshmikantapur (LKP; 22° 06' 03″ N and 88° 18' 19″ E) and Diamond Harbour (DHB; 22° 11' N and 88° 14' E) of West Bengal, India were studied to observe the stability of cadmium (Cd) chelate complexes with diethylenetriaminepentaacetatic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA), removing organic matter (OM). The objective of the present study is "determination of the stability constants and the thermodynamic parameters of Cd-DTPA and Cd-EDTA complexes at different pH and temperatures at the soil-water interface". Complex formation of soil Cd with DTPA and EDTA at the soil-water interface was studied under different ligand-to-metal ratios, pHs and temperatures. Apparent conditional stability constants (log k´) were calculated from the concentrations of Cd chelates and free Cd2+, estimated by solid phase extraction with an ion exchanger. Standard Gibbs energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) of formation were calculated at three different temperatures. The higher stability constants of Cd-DTPA than Cd-EDTA indicated longer persistence of Cd-DTPA at the soil solution interface than Cd-EDTA complex. Increase of ΔG°, ΔH° and ΔS° with progress of temperature revealed that Cd-complex formation was facilitated by temperature. Highly negative ΔG° and positive ΔH° for Cd-complex formation indicated the reaction spontaneous and exothermic. In general, both ligands complexed high percentages of cadmium signalling their role in enhancing remobilization of Cd present in soil and preventing exchange of contaminated Cd from external source with soil mineral matrix; these phenomena may greatly reduce hazard for environment and human health. The result of this study support that DTPA increases solubility and more persistence of Cd in acidic soils within the range of temperature and mole fraction (MF = moles of Cd2+ / sum of the moles of Cd2+ and chelating agent) than that of EDTA due to higher capability of complex formation with Cd2+. Therefore, DTPA enhanced Cd toxicity in acid soils and groundwater. Complex formation in the presence of DTPA at acidic pH decreases with temperature and increases with pH. The higher per cent of Cd complexed in the presence of DTPA revealed that DTPA is a stronger chelating agent than EDTA at acidic pHs. Whereas, the capability of complex formation by EDTA is lower at lower pH but higher at higher pH.


Asunto(s)
Cadmio/análisis , Quelantes/química , Complejos de Coordinación/análisis , Ácido Edético/química , Monitoreo del Ambiente/métodos , Ácido Pentético/química , Contaminantes del Suelo/análisis , Concentración de Iones de Hidrógeno , India , Modelos Teóricos , Suelo/química , Solubilidad , Soluciones , Temperatura , Termodinámica , Agua/química
5.
Environ Monit Assess ; 187(11): 713, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26514796

RESUMEN

A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.


Asunto(s)
Cadmio/análisis , Contaminantes del Suelo/análisis , Adsorción , Cadmio/química , Difusión , Monitoreo del Ambiente , Semivida , Concentración de Iones de Hidrógeno , India , Cinética , Modelos Químicos , Suelo/química , Contaminantes del Suelo/química , Soluciones , Temperatura , Termodinámica
6.
ScientificWorldJournal ; 2014: 216451, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24683322

RESUMEN

A sorption study was conducted on different soils collected from five agroecological zones of West Bengal, India, to understand the soil environmental behavior and fate of cadmium. For this purpose batch adsorption experiments were carried out at the native soil pH and at three different temperatures (25°C, 35°C, and 45°C). The adsorption data fitted by a linear least squares technique to the different sorption isotherms. Most data obtained give the good fit to both Freundlich and modified Langmuir isotherms, but they are not consistent with the linear Langmuir adsorption model. Thermodynamic parameters, namely, thermodynamics equilibrium constant at a particular temperature T (K T (0)), Gibbs free energy at a particular temperature T (ΔG T (0)), and change of enthalpy (ΔH (0)) and change of entropy at temperature T (ΔS T (0)), were also determined by applying sorption value and concentrations of Cd in equilibrium solution within the temperature range. The thermodynamic parameters revealed that Cd sorption increases as the values of K T (0), ΔG T (0), ΔH (0), and ΔS T (0) were increased on reaction temperatures. The spontaneous sorption reaction can be concluded due to high values of ΔG T (0). The positive values of ΔH (0) indicated that the Cd sorption is an endothermic one. Under these present conditions, the soil and its components possibly supply a number of sites having different adsorption energies for cadmium sorption.


Asunto(s)
Cadmio/química , Modelos Químicos , Contaminantes del Suelo/química , Suelo/química , Absorción Fisicoquímica , Cadmio/análisis , Simulación por Computador , India , Cinética , Ensayo de Materiales , Modelos Estadísticos , Contaminantes del Suelo/análisis , Termodinámica
7.
Front Chem ; 12: 1359191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633986

RESUMEN

Utilization of organic phosphates and insoluble phosphates for the gradual generation of plant-available phosphorus (P) is the only sustainable solution for P fertilization. Enzymatic conversions are one of the best sustainable routes for releasing P to soil. Phosphatase enzyme aids in solubilizing organic and insoluble phosphates to plant-available P. We herein report the preparation of highly functional chitosan beads co-immobilized with acid phosphatase and alkaline phosphatase enzymes via a glutaraldehyde linkage. The dual enzyme co-immobilized chitosan beads were characterized using Fourier-transform infrared (FTIR), thermogravimetric (TGA), and scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analyses to confirm the immobilization. The co-immobilized system was found to be active for a broader pH range of ∼4-10 than the individually bound enzymes and mixed soluble enzymes. The bound matrix exhibited pH optima at 6 and 9, respectively, for acid and alkaline phosphatase and a temperature optimum at 50°C. The phosphate-solubilizing abilities of the chitosan-enzyme derivatives were examined using insoluble tri-calcium phosphate (TCP) for wide pH conditions of 5.5, 7, and 8.5 up to 25 days. The liberation of phosphate was highest (27.20 mg/mL) at pH 5.5 after the defined period. The residual soil phosphatase activity was also monitored after 7 days of incubation with CBE for three different soils of pH ∼5.5, 7, and 8.5. The residual phosphatase activity increased for all the soils after applying the CBE. The germination index of the Oryza sativa (rice) plant was studied using different pH buffer media upon the application of the CBE in the presence of tri-calcium phosphate as a phosphate source. Overall, the dual-enzyme co-immobilized chitosan beads were highly effective over a wide pH range for generating plant-available phosphates from insoluble phosphates. The chitosan-enzyme derivative holds the potential to be used for sustainable phosphorus fertilization with different insoluble and organic phosphorus sources.

8.
Sci Total Environ ; 920: 170737, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38340860

RESUMEN

The study investigated the influence of a National Highway (NH) traversing tea estates (TEs) on heavy metal (HM) contamination in the top soils of Upper Assam, India. The dispersion and accumulation of six HMs, viz. cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), and zinc (Zn), within tea-growing soils were assessed using diverse indices: contamination factor (CF), degree of contamination (DC), enrichment factor (EF), geo-accumulation index (Igeo), modified degree of contamination (MDC), Nemerow pollution index (PINemerow), pollution load index (PLI), potential ecological risk factor (Eri), and potential ecological risk index (RI). The order of HM prevalence was Fe > Mn > Zn > Ni > Cu > Cd. Elevated Cd levels near the NH prompted immediate attention, while Cd and Zn showed moderate pollution in CF, EF, and RI. The remaining metals posed minimal individual risk (Eri< 40), resulting in an overall contamination range of "nil to shallow," signifying slight contamination from the studied metals. From MDC values for investigated metals, it was found to be "zero to very low degree of contamination" at all locations except the vicinity of NH. Soil pollution, as determined by PLI, indicated unpolluted soils in both districts, yet PINemerow values indicated slight pollution. The statistical analysis revealed that there is a significant decrease in most of the indices of HM as the distance from NH increases. The application of multivariate statistical techniques namely Principal Component Analysis and Cluster Analysis showed the presence of three distinct homogenous groups of distances based on different indices. This investigation underscores NH-associated anthropogenic effects on TE soil quality due to HM deposition, warranting proactive mitigation measures.


Asunto(s)
Camellia sinensis , Metales Pesados , Contaminantes del Suelo , Suelo , Cadmio/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminación Ambiental/análisis , Zinc/análisis , Manganeso/análisis , Níquel/análisis ,
9.
Ecotoxicol Environ Saf ; 92: 161-73, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23597677

RESUMEN

This present study aims to discern the effect of roadside pond sediments on Brassica juncea (L.) Czern. (cv. Rohini) by examining heavy metal uptake by different parts of the plant and its influence on biochemical properties, biomass, yield and oil content in plant. Although the treated soils were clearly contaminated with heavy metals (HMs) after application of pond sediments and chemical fertilizers, but the metal content in mustard leaves and seeds are below the permissible limit of consumable food. HMs accumulation was proportionally lesser in grains than in shoots and roots. All the biochemical characteristics were significantly (p<0.05) responded to the pond sediments application as compared to the control. Increase in photosynthetic pigment was also observed during growing period while pond sediment was used as amendment. This study revealed that Brassica juncea is well adapted to tolerate and accumulate high quantities of HMs due to increased level of antioxidants (cysteine and ascorbic acid) in roots, shoots and leaves. Multivariate techniques like principal component analysis and cluster analysis (CA) were used as classification techniques. On the basis of factor loadings and principal component scores, different parameters were grouped based on their similarity or closeness, separately in leaves, roots and seeds. A very similar grouping was also obtained using CA. However, pond sediment did not thwart the enhancement of mustard yield and oil content. Therefore, pond sediment would be a valuable resource for mustard as an alternative soil amendment for nutrients, but long-term use may require the cessation to restrict HMs contamination in soils.


Asunto(s)
Metales Pesados/análisis , Planta de la Mostaza/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Suelo/análisis , Ácido Ascórbico/análisis , Ácido Ascórbico/farmacología , Biomasa , Restauración y Remediación Ambiental , Fertilizantes , Fotosíntesis , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Estanques/química
10.
J Hazard Mater Adv ; 10: 100325, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37274946

RESUMEN

The onset of the novel Coronavirus (COVID-19) has impacted all sectors of society. To avoid the rapid spread of this virus, the Government of India imposed a nationwide lockdown in four phases. Lockdown, due to COVID-19 pandemic, resulted a decline in pollution in India in general and in dense cities in particular. Data on key air quality indicators were collected, imputed, and compiled for the period 1st August 2018 to 31st May 2020 for India's four megacities, namely Delhi, Mumbai, Kolkata, and Hyderabad. Autoregressive integrated moving average (ARIMA) model and machine learning technique e.g. Artificial Neural Network (ANN) with the inclusion of lockdown dummy in both the models have been applied to examine the impact of anthropogenic activity on air quality parameters. The number of indicators having significant lockdown dummy are six (PM2.5, PM10, NOx, CO, benzene, and AQI), five (PM2.5, PM10, NOx, SO2 and benzene), five (PM10, NOx, CO, benzene and AQI) and three (PM2.5, PM10, and AQI) for Delhi, Kolkata, Mumbai and Hyderabad respectively. It was also observed that the prediction accuracy significantly improved when a lockdown dummy was incorporated. The highest reduction in Mean Absolute Percentage Error (MAPE) is found for CO in Hyderabad (28.98%) followed by the NOx in Delhi (28.55%). Overall, it can be concluded that there is a significant decline in the value of air quality parameters in the lockdown period as compared to the same time phase in the previous year. Insights from the COVID-19 pandemic will help to achieve significant improvement in ambient air quality while keeping economic growth in mind.

11.
Foods ; 12(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685130

RESUMEN

Tocklai vegetative (TV) cultivars are extensively planted in the tea-growing regions of Northeast India. The present investigation explores the impact of season on the total polyphenol (TP) content and the antioxidant activity of thirty-one TV cultivars (TV1-TV31) and four other commercially popular cultivars, namely, Betjan, Kharijan, S.3A/3, and T.3E/3. The TP content of the cultivars was observed to be highest in the monsoon season, with values ranging from 230.57 to 283.53 mg g-1. In the pre-monsoon season and autumn, the TP content ranged from 197.87 to 256.77 mg g-1 and from 169.97 to 223.50 mg g-1, respectively. Antioxidant activity was measured through DPPH, ABTS, FRAP, and lipid peroxidation inhibition assays. The cultivars showed the highest antioxidant activity in the monsoon in tandem with TP content. A bivariate correlation indicated a highly significant (p ≤ 0.01) positive correlation of antioxidant activity with TP content (R2 = 0.83-0.96).

12.
ACS Omega ; 8(45): 43151-43162, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024765

RESUMEN

Myo-inositol hexakisphosphates (IHPs) or phytates are the most abundant organic phosphates having the potential to serve as a phosphorus reserve in soil. Understanding the fate of IHP interaction with soil minerals tends to be crucial for its efficient storage and utilization as a slow-release organic phosphate fertilizer. We have systematically compared the effective intercalation strategy of a phytate onto Zn-Fe layered double hydroxide (LDH) acting as storage/carrier material through coprecipitation and anion exchange. Powder X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetric analysis, FTIR spectra, and molecular modeling demonstrated the formation of phytate-intercalated Zn-Fe LDH through coprecipitation with a maximum loading of 41.34% (w/w) in the pH range of ∼9-10 in a vertical alignment through monolayer formation. No intercalation product was obtained from the anion exchange method, which was concluded based on the absence of shifting in the XRD (003) peak. A change in the zeta potential values from positive to negative and subsequent increase in solution pH, with decreasing phytate concentration, are suggestive of adsorption of IHP onto the LDH surface. The batch adsorption data were best fitted with Langmuir isotherm equation and followed the pseudo-second-order kinetic model. The maximum adsorption capacity was found to be 45.87 mg g-1 at a temperature of 25 ± 0.5 °C and pH 5.63.

13.
J Hazard Mater ; 442: 129970, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162303

RESUMEN

A field study was conducted from 0 to 360 days to investigate the effect of tea pruning litter biochar (TPLBC) on the accumulation of major micronutrients (copper: Cu, manganese: Mn, and zinc: Zn) in soil, their uptake by tea plant (clone: S.3 A/3) and level of contamination in soil due to TPLBC. To evaluate the level of contamination due to TPLBC, a soil pollution assessment was carried out using the geo-accumulation index (Igeo), enrichment factor (EF), contamination factor (CF), potential ecological risk factor (PERF), individual contamination factor (ICF), and risk assessment code (RAC). The total content of Cu, Mn, and Zn gradually increased with increasing doses of TPLBC at 0D, and then decreased with time. The fractionation of the three micronutrients in soil changed after the application of TPLBC. The contamination risk assessment of soil for Cu, Mn, and Zn based on the Igeo, EF, CF, PERF,ICF, and RAC suggested that the application of TPLBC does not have any adverse effect on soil. Except for Mn, the bioconcentration and translocation factors were less than one for Cu and Zn. Results from this study revealed that the application of 400 kg TPLBC ha-1 is significantly better than the other treatments for Cu, Mn, and Zn at a 5% level of significance.


Asunto(s)
Camellia sinensis , Metales Pesados , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Micronutrientes/análisis , , Cobre/análisis , Manganeso/análisis , Monitoreo del Ambiente/métodos , Zinc/análisis , Medición de Riesgo , Metales Pesados/análisis
14.
Biol Trace Elem Res ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37755587

RESUMEN

The effects of human activities are becoming clearer every year, with multiple reports of struggling and eroded ecosystems resulting in new threats of plant and animal extinctions throughout the world. It has been speculated that roadside tea-growing soils impact on metal dynamics from soil to tea plants and subsequently to tea infusion which may be threatened by increasingly unpredictable and dangerous surroundings. Furthermore, heavy metals released from vehicles on the national highway (NH) could be a source of metal contamination in roadside tea soils and tea plants. This study was articulated to realize the effect of NH on a buildup of selected metals (Cu, Cd, Fe, Mn, Ni, and Zn) in made tea along with repeated tea infusion. In general, metal concentration was found significantly higher in made tea prepared from the young shoots collected from the vicinity of NH. The results also showed that distance from the NH and infusion process significantly influenced to content of the analysed metal in tea infusions. The mean average daily intake (ADI) and hazard quotient (HQ) values of analysed tea samples were found in the orderMn˃Fe˃Zn˃Cu˃Ni˃Cd and Mn˃Cu˃Zn˃Fe˃Ni˃Cd, respectively. The HQ values of all analysed metals were found << 1, indicating that ingestion of tea infusion with analysed heavy metals should not cause a danger to human health. However, this study further demonstrates the consumption of tea infusion prepared from made tea around the vicinity of NH may contribute to a significantly higher quantity of metal intake in the human body. From the hierarchical cluster analysis, it has been observed that there are three homogenous groups of analysed heavy metals.

15.
ScientificWorldJournal ; 2012: 485193, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22448135

RESUMEN

Tea (Camellia sinensis L.) leaf contains a large amount of catechins (a group of very active flavonoids) which contribute to major quality attributes of black tea. Based on morphological characters tea plants were classified as Assam, China, and Cambod varieties. The present study is an attempt for biochemical fingerprinting of the tea varieties based on catechin composition in green leaf of cultivars grown in Northeast India. Assam variety cultivars contained the highest level of catechins followed by Cambod and China. The average catechin contents were 231 ± 7 mg g(-1), 202 ± 5 mg g(-1), and 157 ± 4 mg g(-1) of dry weight of green leaf for Assam, Cambod, and China cultivars, respectively. Among the individual catechins the variations in epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were the most prominent among the varieties. High EGC content was found to be a characteristic of Assam variety which was further corroborated through multivariate analysis.


Asunto(s)
Catequina/clasificación , Té/química , Catequina/química , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , India , Hojas de la Planta/química , Análisis de Componente Principal , Espectrofotometría Ultravioleta
16.
RSC Adv ; 12(11): 6704-6714, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35424620

RESUMEN

Indiscriminate use of chemical fertilizers leads to soil environmental disbalance and therefore, preparation and application of environment-friendly slow-release multifunctional fertilizers are of paramount importance for sustainable crop production in the present scenario. In this study, we propose a slow-release multifunctional composite nitrogen (N) fertilizer, which possesses the ability to supply plant accessible N in the form of ammonium (NH4 +) and nitrate (NO3 -) to improve nitrate assimilation coupled with zinc (Zn, a major micronutrient for plants in the soil) after its degradation. For this purpose, NO3 --intercalated zinc-aluminum (Zn-Al) layered double hydroxide (LDH) was synthesized using a co-precipitation protocol. The prepared LDH was added as 25.45% of total polymer weight to a sodium carboxymethyl cellulose/hydroxyethyl cellulose citric acid (NaCMC/HEC-CA) biodegradable hydrogel. A. brasilense, commonly used nitrogen-fixing bacteria in soils, was added to the LDH-hydrogel composite along with LDH alone to augment the availability of NH4 + and NO3 -. Adjusting the pH under acidic (pH 5.25) and neutral (pH 7) conditions, the release pattern of NO3 - from LDH and the composite was monitored for 30 days at normal temperature. The pH was selected based on the soil analysis data of North East India. The LDH-composite released 90% (w/w) and 85.45% (w/w) of intercalated NO3 - at pH 5.25 and 7.00 respectively in 30 days. However, 100% (w/w) and 87% (w/w) of intercalated NO3 - at pH 5.25 and 7.00 respectively were released in 30 days when only LDH was applied, which indicated the lower performance of LDH alone in comparison to the LDH-composite for the nitrate holding pattern. The pH of the bacteria-loaded system was observed to be acidic (pH = 5-6) during the study of nitrate assimilation and Zn2+ release. A. brasilense improved nitrate assimilation and increased the NH4 + ion concentration in the studied system. A significant increase in Zn2+ release was observed from day 5 in the presence of A. brasilense in the LDH-composite compared with that in the absence of A. brasilense. In conclusion, the prepared LDH-hydrogel-A. brasilense composite fertilizer system increases the availability of plant accessible N form (both NO3 - and NH4 +) and can potentially improve soil fertility with the addition of Zn and bacteria to the soil in the extended course.

17.
Front Plant Sci ; 13: 1017145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605950

RESUMEN

Harnessing the potential yields of evergreen perennial crops like tea (Camellia sinensis L.) essentially requires the application of optimum doses of nutrients based on the soil test reports. In the present study, the soil pH, organic carbon (OC), available potassium as K2O (AK), and available sulphur (AS) of 7300 soil samples from 115 tea estates spread over the Dooars ranging from 88°52'E to 89°86'E longitude and 26°45'N to 27°00'N latitude of West Bengal, India have been documented. About 54% of soil samples were found within the optimum range of soil pH (4.50-5.50) for tea cultivation. The overall range of OC was found from 0.28% to 6.00% of which, 94% of the analyzed samples were within the range of satisfactory to excellent level of OC i.e. (>0.80% to 6.00%). Around 36.3% of soil samples were found to have high AK (>100 mg kg-1) but 37.1% of soils were found to have high AS content (>40 mg kg-1). The nutrient index status of soil pH was low in Dam Dim, Chulsa, Nagrakata, Binnaguri, and Jainti sub-districts. Soils from five sub-districts had a high nutrient index (2.47 to 2.83) for soil organic carbon. However, it existed in the medium index (1.69 and 2.22) for Dalgaon and Kalchini sub-districts. Only Nagrakata sub-district soil samples were in the high nutrient index (2.65) for AK. All analyzed samples showed a medium nutrient index (1.97 to 2.27) for AS. The result indicated that soil pH was significantly negatively correlated with soil OC (-0.336) and AK (-0.174). However, the soil OC was significantly positive correlated with AK (0.258) and AS (0.100). It could be concluded that a balanced fertilizer application would be needed as a part of the soil improvement program through soil chemical tests for sustainable tea cultivation.

18.
Food Chem X ; 13: 100255, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35498976

RESUMEN

Effect of tea pruning litter biochar (TPLBC) on arsenic (As), cadmium (Cd) and chromium (Cr) content in made tea and successive tea infusions were investigated in a greenhouse experiment with two tea cultivars (TV23 and S.3A/3). Made tea prepared from TV23 and S.3A/3 clone, a decrease in the concentration of As, Cd, and Cr by 36.73%, 16.22%, 13.96%, and 36.63%, 27.78%, 10.54%, respectively over control on the application of the highest dose of TPLBC (500 kg TPLBC ha-1). Irrespective of treatments, studied element concentrations were significantly higher (p ≤ 0.05) in the first infusion and lower in the third. Considering Ten g made tea consumption per person per day, the maximum average daily intakes of As, Cd and Cr in a higher dose of TPLBC were far below the tolerable weekly intake prescribed by the World Health Organization. As hazard quotient values of selected elements were ≪ 1, no significant adverse health consequences are expected for tea consumers.

19.
RSC Adv ; 11(19): 11457-11467, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35423631

RESUMEN

Tea (Camellia sinensis L.) leaves undergo complex chemical transformations during black tea processing. However, the dynamic chemical changes during tea processing have not been explored in popular cultivars of North East India. In this study, changes in catechins, caffeine, total polyphenol (TP) and formation of theaflavins were examined throughout the different stages of CTC (curl, tear and crush) black tea processing based on UPLC metabolomic analysis along with antioxidant activity for eight cultivars viz. S.3A/3, TV1, TV7, TV9, TV17, TV22, TV23 and TV25. The results demonstrated that the most prolific changes were observed after complete maceration of tea leaves. The total catechin, (-)-epigallocatechin gallate and (-)-epicatechin gallate levels decreased by 96, 97 and 89%, respectively as the processing progressed from fresh leaves to black tea. The TP level decreased by 26 to 37% throughout the processing path. The caffeine content increased by 18% during processing. The total theaflavin reached the highest level at 20 min of fermentation and then decreased by 13 to 36% at 40 min. Cultivar TV23 and S.3A/3 had a high content of total theaflavin with 17.9 and 16.9 mg g-1, respectively. The antioxidant activity was observed to be decreased by 31% for the black tea as compared to fresh leaves. It is also observed that the total phenolic content exerted a greater effect on antioxidant activity rather than catechins and theaflavins. This study provides an insightful observation of black tea processing which will immensely help in improving the quality of processed tea.

20.
Food Chem X ; 12: 100173, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34917927

RESUMEN

This study reported the content of selected metals, viz. cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb) and zinc (Zn) as well as non-carcinogenic risks of orthodox green tea and CTC (crush, tear and curl) green tea (Camellia sinensis L.) in India. Results revealed that significantly higher amount of Cr (1.26-10.48 mg kg-1), Cu (13.40-22.73 mg kg-1), Fe (54.14-99.65 mg kg-1), Ni (3.43-7.09 mg kg-1), and Zn (25.04-38.04 mg kg-1) in CTC green tea than orthodox one. However, no definite trend was observed for Cd and Pb, with overall contents ranged from 6.68 to 23.32 µg kg-1 and 0.04 to 0.13 mg kg-1, respectively. The extraction of the elements in tea infusion was higher for CTC green tea. The hazard quotient and hazard index values of all the studied metals were less than unity, confirming no significant health effect for consumers assuming drinking of 750 mL tea infusion prepared from 10 g green tea per day per person.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA