RESUMEN
Objective- To determine the role of a cytokine-like protein DKK3 (dikkopf-3) in directly transdifferentiating fibroblasts into endothelial cells (ECs) and the underlying mechanisms. Approach and Results- DKK3 overexpression in human fibroblasts under defined conditions for 4 days led to a notable change in cell morphology and progenitor gene expression. It was revealed that these cells went through mesenchymal-to-epithelial transition and subsequently expressed KDR (kinase insert domain receptor) at high levels. Further culture in EC defined media led to differentiation of these progenitors into functional ECs capable of angiogenesis both in vitro and in vivo, which was regulated by the VEGF (vascular endothelial growth factor)/miR (microRNA)-125a-5p/Stat3 (signal transducer and activator of transcription factor 3) axis. More importantly, fibroblast-derived ECs showed the ability to form a patent endothelium-like monolayer in tissue-engineered vascular grafts ex vivo. Conclusions- These data demonstrate that DKK3 is capable of directly differentiating human fibroblasts to functional ECs under defined media and provides a novel potential strategy for endothelial regeneration.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Transdiferenciación Celular/fisiología , Células Endoteliales/citología , Fibroblastos/efectos de los fármacos , Animales , Reactores Biológicos , Células Cultivadas , Medios de Cultivo , Transición Epitelial-Mesenquimal/fisiología , Fibroblastos/citología , Humanos , Ratones , Ratones Endogámicos NOD , MicroARNs/fisiología , Neovascularización Fisiológica , Proteínas Recombinantes/biosíntesis , Factor de Transcripción STAT3/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genéticaRESUMEN
OBJECTIVE: DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition. APPROACH AND RESULTS: In the present study, we used a murine model of atherosclerosis (ApoE-/-) in conjunction with DKK3-/- and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1+ (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-ß (transforming growth factor-ß)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation. CONCLUSIONS: Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.
Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Estenosis Carotídea/metabolismo , Transdiferenciación Celular , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica , Células Madre/metabolismo , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Ataxina-1/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Estenosis Carotídea/genética , Estenosis Carotídea/patología , Células Cultivadas , Quimiocinas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Hemorragia/genética , Hemorragia/metabolismo , Hemorragia/patología , Hemorragia/prevención & control , Humanos , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fenotipo , Conejos , Células Madre/patología , Factor de Crecimiento Transformador beta1/metabolismo , Vía de Señalización WntRESUMEN
BACKGROUND: Dickkopf-related protein 3 (DKK3) is a secreted protein that is involved in the regulation of cardiac remodeling and vascular smooth muscle cell differentiation, but little is known about its role in atherosclerosis. METHODS: We tested the hypothesis that DKK3 is atheroprotective using both epidemiological and experimental approaches. Blood DKK3 levels were measured in the Bruneck Study in 2000 (n=684) and then in 2005 (n=574). DKK3-deficient mice were crossed with apolipoprotein E-/- mice to evaluate atherosclerosis development and vessel injury-induced neointimal formation. Endothelial cell migration and the underlying mechanisms were studied using in vitro cell culture models. RESULTS: In the prospective population-based Bruneck Study, the level of plasma DKK3 was inversely related to carotid artery intima-media thickness and 5-year progression of carotid atherosclerosis independently from standard risk factors for atherosclerosis. Experimentally, we analyzed the area of atherosclerotic lesions, femoral artery injury-induced reendothelialization, and neointima formation in both DKK3-/-/apolipoprotein E-/- and DKK3+/+/apolipoprotein E-/- mice. It was demonstrated that DKK3 deficiency accelerated atherosclerosis and delayed reendothelialization with consequently exacerbated neointima formation. To explore the underlying mechanisms, we performed transwell and scratch migration assays using cultured human endothelial cells, which exhibited a significant induction in cell migration in response to DKK3 stimulation. This DKK3-induced migration activated ROR2 and DVL1, activated Rac1 GTPases, and upregulated JNK and c-jun phosphorylation in endothelial cells. Knockdown of the ROR2 receptor using specific siRNA or transfection of a dominant-negative form of Rac1 in endothelial cells markedly inhibited cell migration and downstream JNK and c-jun phosphorylation. CONCLUSIONS: This study provides the evidence for a role of DKK3 in the protection against atherosclerosis involving endothelial migration and repair, with great therapeutic potential implications against atherosclerosis.
Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Citocinas/deficiencia , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Proteínas Adaptadoras Transductoras de Señales , Anciano , Anciano de 80 o más Años , Animales , Grosor Intima-Media Carotídeo/tendencias , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Quimiocinas , Citocinas/administración & dosificación , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neointima/metabolismo , Neointima/prevención & control , Estudios ProspectivosRESUMEN
Deciphering the extracellular signals that regulate SMC differentiation from stem cells is vital to further our understanding of the pathogenesis of vascular disease and for development of cell-based therapies and tissue engineering. Hyaluronan (HA) has emerged as an important component of the stem cell niche, however its role during stem cell differentiation is a complicated and inadequately defined process. This study aimed to investigate the role of HA in embryonic stem cell (ESC) differentiation toward a SMC lineage. ESCs were seeded on collagen-IV in differentiation medium to generate ESC-derived SMCs (esSMCs). Differentiation coincided with increased HA synthase (HAS) 2 expression, accumulation of extracellular HA and its assembly into pericellular matrices. Inhibition of HA synthesis by 4-methylumbelliferone (4MU), removal of the HA coat by hyaluronidase (HYAL) or HAS2 knockdown led to abrogation of SMC gene expression. HA activates ERK1/2 and suppresses EGFR signaling pathways via its principle receptor, CD44. EGFR inactivation coincided with increased binding to CD44, which was further augmented by addition of high molecular weight (HMW)-HA either exogenously or via HAS2 overexpression through adenoviral gene transfer. HMW-HA-stimulated esSMCs displayed a functional role in vascular tissue engineering ex vivo, vasculogenesis in a matrigel plug model and SMC accumulation in neointimal lesions of vein grafts in mice. These findings demonstrate that HAS2-induced HA synthesis and organization drives ESC-SMC differentiation. Thus, remodeling of the HA microenvironment is a critical step in directing stem cell differentiation toward a vascular lineage, highlighting HA as a potential target for treatment of vascular diseases. Stem Cells 2016;34:1225-1238.
Asunto(s)
Diferenciación Celular , Linaje de la Célula , Ácido Hialurónico/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Miocitos del Músculo Liso/citología , Animales , Activación Enzimática , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Espacio Extracelular/metabolismo , Receptores de Hialuranos/metabolismo , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/biosíntesis , Sistema de Señalización de MAP Quinasas , Ratones , Modelos Biológicos , Neointima/metabolismo , Neovascularización Fisiológica , Unión Proteica , Regulación hacia ArribaRESUMEN
Recent studies have shown that Sca-1(+) (stem cell antigen-1) stem/progenitor cells within blood vessel walls may contribute to neointima formation, but the mechanism behind their recruitment has not been explored. In this work Sca-1(+) progenitor cells were cultivated from mouse vein graft tissue and found to exhibit increased migration when cocultured with smooth muscle cells (SMCs) or when treated with SMC-derived conditioned medium. This migration was associated with elevated levels of chemokines, CCL2 (chemokine (C-C motif) ligand 2) and CXCL1 (chemokine (C-X-C motif) ligand 1), and their corresponding receptors on Sca-1(+) progenitors, CCR2 (chemokine (C-C motif) receptor 2) and CXCR2 (chemokine (C-X-C motif) receptor 2), which were also upregulated following SMC conditioned medium treatment. Knockdown of either receptor in Sca-1(+) progenitors significantly inhibited cell migration. The GTPases Cdc42 and Rac1 were activated by both CCL2 and CXCL1 stimulation and p38 phosphorylation was increased. However, only Rac1 inhibition significantly reduced migration and p38 phosphorylation. After Sca-1(+) progenitors labeled with green fluorescent protein (GFP) were applied to the adventitial side of wire-injured mouse femoral arteries, a large proportion of GFP-Sca-1(+) -cells were observed in neointimal lesions, and a marked increase in neointimal lesion formation was seen 1 week post-operation. Interestingly, Sca-1(+) progenitor migration from the adventitia to the neointima was abrogated and neointima formation diminished in a wire injury model using CCL2(-/-) mice. These findings suggest vascular stem/progenitor cell migration from the adventitia to the neointima can be induced by SMC release of chemokines which act via CCR2/Rac1/p38 and CXCR2/Rac1/p38 signaling pathways. Stem Cells 2016;34:2368-2380.
Asunto(s)
Movimiento Celular , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/patología , Células Madre/citología , Células Madre/metabolismo , Animales , Antígenos Ly/metabolismo , Movimiento Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Receptores CCR2 , Receptores de Interleucina-8B/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión al GTP rac1/metabolismoRESUMEN
Smooth muscle cells (SMCs) are a key component of healthy and tissue engineered vessels and play a crucial role in vascular development and the pathogenic events of vascular remodeling i.e. restenosis. However, the cell source from which they can be isolated is limited. Embryonic stem (ES) cells that have the remarkable capability to differentiate into vascular SMCs in response to specific stimuli provide a useful model for studying SMC differentiation. Previous studies suggested that dickkopf homolog 3 (DKK3) has a role in human partially induced pluripotent stem cell to SMC differentiation. Here, we demonstrate that the expression of DKK3 is essential for the expression of SMC markers and myocardin at both the mRNA and protein levels during mouse ES cell differentiation into SMCs (ESC-SMC differentiation). Overexpression of DKK3 leads to further up-regulation of the aforementioned markers. Further investigation indicates that DKK3 added as a cytokine activates activating transcription factor 6 (ATF6), leading to the increased binding of ATF6 on the myocardin promoter and increased its expression. In addition, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) promotes the expression of ATF6 and leads to further increase of myocardin transcription. Our findings offer a novel mechanism by which DKK3 regulates ESC-SMC differentiation by activating ATF6 and promoting myocardin expression.
Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Células Madre Embrionarias/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Transactivadores/metabolismo , Factor de Transcripción Activador 6/agonistas , Factor de Transcripción Activador 6/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Sitios de Unión , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Embrión de Mamíferos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Flavonoides/farmacología , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Proteínas Nucleares/agonistas , Proteínas Nucleares/química , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/genética , Transducción de Señal , Transactivadores/agonistas , Transactivadores/química , Transactivadores/genéticaRESUMEN
Vascular smooth muscle cells (SMCs), a major structural component of the vessel wall, not only play a key role in maintaining vascular structure but also perform various functions. During embryogenesis, SMC recruitment from their progenitors is an important step in the formation of the embryonic vascular system. SMCs in the arterial wall are mostly quiescent but can display a contractile phenotype in adults. Under pathophysiological conditions, i.e. vascular remodelling after endothelial dysfunction or damage, contractile SMCs found in the media switch to a secretory type, which will facilitate their ability to migrate to the intima and proliferate to contribute to neointimal lesions. However, recent evidence suggests that the mobilization and recruitment of abundant stem/progenitor cells present in the vessel wall are largely responsible for SMC accumulation in the intima during vascular remodelling such as neointimal hyperplasia and arteriosclerosis. Therefore, understanding the regulatory mechanisms that control SMC differentiation from vascular progenitors is essential for exploring therapeutic targets for potential clinical applications. In this article, we review the origin and differentiation of SMCs from stem/progenitor cells during cardiovascular development and in the adult, highlighting the environmental cues and signalling pathways that control phenotypic modulation within the vasculature.
Asunto(s)
Diferenciación Celular , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Animales , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Células Madre/citología , Células Madre/metabolismoRESUMEN
Finding a suitable cell source for endothelial cells (ECs) for cardiovascular regeneration is a challenging issue for regenerative medicine. In this paper, we describe a novel mechanism regulating induced pluripotent stem cells (iPSC) differentiation into ECs, with a particular focus on miRNAs and their targets. We first established a protocol using collagen IV and VEGF to drive the functional differentiation of iPSCs into ECs and compared the miRNA signature of differentiated and undifferentiated cells. Among the miRNAs overrepresented in differentiated cells, we focused on microRNA-21 (miR-21) and studied its role in iPSC differentiation. Overexpression of miR-21 in predifferentiated iPSCs induced EC marker up-regulation and in vitro and in vivo capillary formation; accordingly, inhibition of miR-21 produced the opposite effects. Importantly, miR-21 overexpression increased TGF-ß2 mRNA and secreted protein level, consistent with the strong up-regulation of TGF-ß2 during iPSC differentiation. Indeed, treatment of iPSCs with TGFß-2 induced EC marker expression and in vitro tube formation. Inhibition of SMAD3, a downstream effector of TGFß-2, strongly decreased VE-cadherin expression. Furthermore, TGFß-2 neutralization and knockdown inhibited miR-21-induced EC marker expression. Finally, we confirmed the PTEN/Akt pathway as a direct target of miR-21, and we showed that PTEN knockdown is required for miR-21-mediated endothelial differentiation. In conclusion, we elucidated a novel signaling pathway that promotes the differentiation of iPSC into functional ECs suitable for regenerative medicine applications.
Asunto(s)
Diferenciación Celular/fisiología , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta2/biosíntesis , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Células Endoteliales/citología , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , MicroARNs/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta2/genética , Regulación hacia Arriba/fisiologíaRESUMEN
RATIONALE: Smooth muscle cells (SMCs) are a key component of tissue-engineered vessels. However, the sources by which they can be isolated are limited. OBJECTIVE: We hypothesized that a large number of SMCs could be obtained by direct reprogramming of fibroblasts, that is, direct differentiation of specific cell lineages before the cells reaching the pluripotent state. METHODS AND RESULTS: We designed a combined protocol of reprogramming and differentiation of human neonatal lung fibroblasts. Four reprogramming factors (OCT4, SOX2, KLF4, and cMYC) were overexpressed in fibroblasts under reprogramming conditions for 4 days with cells defined as partially-induced pluripotent stem (PiPS) cells. PiPS cells did not form tumors in vivo after subcutaneous transplantation in severe combined immunodeficiency mice and differentiated into SMCs when seeded on collagen IV and maintained in differentiation media. PiPS-SMCs expressed a panel of SMC markers at mRNA and protein levels. Furthermore, the gene dickkopf 3 was found to be involved in the mechanism of PiPS-SMC differentiation. It was revealed that dickkopf 3 transcriptionally regulated SM22 by potentiation of Wnt signaling and interaction with Kremen1. Finally, PiPS-SMCs repopulated decellularized vessel grafts and ultimately gave rise to functional tissue-engineered vessels when combined with previously established PiPS-endothelial cells, leading to increased survival of severe combined immunodeficiency mice after transplantation of the vessel as a vascular graft. CONCLUSIONS: We developed a protocol to generate SMCs from PiPS cells through a dickkopf 3 signaling pathway, useful for generating tissue-engineered vessels. These findings provide a new insight into the mechanisms of SMC differentiation with vast therapeutic potential.
Asunto(s)
Prótesis Vascular , Fibroblastos/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Pulmón/citología , Miocitos del Músculo Liso/citología , Células Madre Pluripotentes/citología , Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular/fisiología , Núcleo Celular/metabolismo , Separación Celular/métodos , Quimiocinas , Feto/citología , Fibroblastos/metabolismo , Humanos , Factor 4 Similar a Kruppel , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/metabolismo , Activación Transcripcional/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismoRESUMEN
The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.
Asunto(s)
Reprogramación Celular , Células Endoteliales/citología , Fibroblastos/metabolismo , Neovascularización Patológica , Ingeniería de Tejidos/métodos , Animales , Antígenos CD/genética , Aorta/patología , Cadherinas/genética , Diferenciación Celular , Células Cultivadas , Fibroblastos/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Factor 4 Similar a Kruppel , Ratones , Ratones SCID , Modelos Genéticos , Regiones Promotoras Genéticas , Células Madre/citología , Estrés MecánicoRESUMEN
Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3ß (LC3-ßII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3ß expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Proteínas de Unión al ADN/genética , Endotelio Vascular/metabolismo , Proteínas de la Membrana/genética , Empalme del ARN , ARN Mensajero/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Animales , Secuencia de Bases , Beclina-1 , Células Cultivadas , Inmunoprecipitación de Cromatina , Cartilla de ADN , Endotelio Vascular/citología , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción del Factor Regulador X , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión a la X-BoxRESUMEN
OBJECTIVE: Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown. APPROACH AND RESULTS: Using an established technique, vascular progenitor cells were isolated from adventitial tissues of mouse vessel grafts and purified with microbeads specific for stem cell antigen-1. We provide evidence that vascular progenitor cells treated with sirolimus resulted in an induction of their migration in both transwell and wound healing models, clearly mediated by CXCR4 activation. We confirmed the sirolimus-mediated increase of migration from the adventitial into the intima side using an ex vivo decellularized vessel scaffold, where they form neointima-like lesions that expressed high levels of smooth muscle cell (SMC) markers (SM-22α and calponin). Subsequent in vitro studies confirmed that sirolimus can induce SMC but not endothelial cell differentiation of progenitor cells. Mechanistically, we showed that sirolimus-induced progenitor-SMC differentiation was mediated via epidermal growth factor receptor and extracellular signal-regulated kinase 1/2 activation that lead to ß-catenin nuclear translocation. The ablation of epidermal growth factor receptor, extracellular signal-regulated kinase 1/2, or ß-catenin attenuated sirolimus-induced SM-22α promoter activation and SMC differentiation. CONCLUSIONS: These findings provide direct evidence of sirolimus-induced progenitor cell migration and differentiation into SMC via CXCR4 and epidermal growth factor receptor/extracellular signal-regulated kinase/ß-catenin signal pathways, thus implicating a novel mechanism of restenosis formation after sirolimus-eluting stent treatment.
Asunto(s)
Células Madre Adultas/efectos de los fármacos , Adventicia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Sirolimus/farmacología , beta Catenina/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Células Madre Adultas/enzimología , Adventicia/citología , Adventicia/enzimología , Animales , Antígenos Ly/metabolismo , Biomarcadores/metabolismo , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Constricción Patológica , Activación Enzimática , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/enzimología , Interferencia de ARN , Receptores CXCR4/agonistas , Receptores CXCR4/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Andamios del Tejido , Transfección , beta Catenina/genética , CalponinasRESUMEN
RATIONALE: Histone deacetylase (HDAC)7 is expressed in the early stages of embryonic development and may play a role in endothelial function. OBJECTIVE: This study aimed to investigate the role of HDAC7 in endothelial cell (EC) proliferation and growth and the underlying mechanism. METHODS AND RESULTS: Overexpression of HDAC7 by adenoviral gene transfer suppressed human umbilical vein endothelial cell (HUVEC) proliferation by preventing nuclear translocation of beta-catenin and downregulation of T-cell factor-1/Id2 (inhibitor of DNA binding 2) and cyclin D1, leading to G(1) phase elongation. Further assays with the TOPFLASH reporter and quantitative RT-PCR for other beta-catenin target genes such as Axin2 confirmed that overexpression of HDAC7 decreased beta-catenin activity. Knockdown of HDAC7 by lentiviral short hairpin RNA transfer induced beta-catenin nuclear translocation but downregulated cyclin D1, cyclin E1 and E2F2, causing HUVEC hypertrophy. Immunoprecipitation assay and mass spectrometry analysis revealed that HDAC7 directly binds to beta-catenin and forms a complex with 14-3-3 epsilon, zeta, and eta proteins. Vascular endothelial growth factor treatment induced HDAC7 degradation via PLCgamma-IP3K (phospholipase Cgamma-inositol-1,4,5-trisphosphate kinase) signal pathway and partially rescued HDAC7-mediated suppression of proliferation. Moreover, vascular endothelial growth factor stimulation suppressed the binding of HDAC7 with beta-catenin, disrupting the complex and releasing beta-catenin to translocate into the nucleus. CONCLUSIONS: These findings demonstrate that HDAC7 interacts with beta-catenin keeping ECs in a low proliferation stage and provides a novel insight into the mechanism of HDAC7-mediated signal pathways leading to endothelial growth.
Asunto(s)
Proliferación Celular , Células Endoteliales/enzimología , Histona Desacetilasas/metabolismo , Transducción de Señal , beta Catenina/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Activo de Núcleo Celular , Adenoviridae/genética , Ciclo Celular , Células Cultivadas , Ciclina D1/metabolismo , Ciclina E/metabolismo , Factor de Transcripción E2F2/metabolismo , Células Endoteliales/patología , Vectores Genéticos , Histona Desacetilasas/genética , Humanos , Hipertrofia , Inmunoprecipitación , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Espectrometría de Masas , Neovascularización Fisiológica , Proteínas Oncogénicas/metabolismo , Fosfolipasa C gamma/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Transducción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Adventitial progenitor cells, including SCA-1+ and mesenchymal stem cells, are believed to be important in vascular remodeling. It has been shown that SCA-1+ progenitor cells are involved in neointimal hyperplasia of vein grafts, but little is known concerning their involvement in hyperlipidemia-induced atherosclerosis. We employed single-cell sequencing technology on primary adventitial mouse SCA-1+ cells from wild-type and atherosclerotic-prone (ApoE-deficient) mice and found that a group of genes controlling cell migration and matrix protein degradation was highly altered. Adventitial progenitors from ApoE-deficient mice displayed an augmented migratory potential both in vitro and in vivo. This increased migratory ability was mimicked by lipid loading to SCA-1+ cells. Furthermore, we show that lipid loading increased miRNA-29b expression and induced sirtuin-1 and matrix metalloproteinase-9 levels to promote cell migration. These results provide direct evidence that blood cholesterol levels influence vascular progenitor cell function, which could be a potential target cell for treatment of vascular disease.
Asunto(s)
Ataxina-1/genética , Movimiento Celular/genética , Hiperlipidemias/etiología , Hiperlipidemias/metabolismo , Células Madre/metabolismo , Animales , Apolipoproteínas E/deficiencia , Ataxina-1/metabolismo , Aterosclerosis/sangre , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores , Diferenciación Celular/genética , LDL-Colesterol/metabolismo , Biología Computacional/métodos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Perfilación de la Expresión Génica , Hiperlipidemias/sangre , Inmunohistoquímica , Mediadores de Inflamación/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Células Madre/citologíaRESUMEN
The construction of vascular conduits is a fundamental strategy for surgical repair of damaged and injured vessels resulting from cardiovascular diseases. The current protocol presents an efficient and reproducible strategy in which functional tissue engineered vessel grafts can be generated using partially induced pluripotent stem cell (PiPSC) from human fibroblasts. We designed a decellularized vessel scaffold bioreactor, which closely mimics the matrix protein structure and blood flow that exists within a native vessel, for seeding of PiPSC-endothelial cells or smooth muscle cells prior to grafting into mice. This approach was demonstrated to be advantageous because immune-deficient mice engrafted with the PiPSC-derived grafts presented with markedly increased survival rate 3 weeks after surgery. This protocol represents a valuable tool for regenerative medicine, tissue engineering and potentially patient-specific cell-therapy in the near future.