RESUMEN
BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.
Asunto(s)
Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Ubiquitina Tiolesterasa , Animales , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/metabolismo , Humanos , Ratones , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Masculino , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/enzimología , Ratas Sprague-Dawley , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/etiología , Remodelación Vascular , Células Cultivadas , Proliferación Celular , Ratones Endogámicos C57BL , Indoles , OximasRESUMEN
Heparin-induced thrombocytopenia (HIT) is an unpredictable, potentially catastrophic adverse effect resulting from an immune response to platelet factor 4 (PF4)/heparin complexes. We performed a genome-wide association study (GWAS) with positive functional assay as the outcome in a large discovery cohort of patients divided into 3 groups: (1) functional assay-positive cases (n = 1269), (2) antibody-positive (functional assay-negative) controls (n = 1131), and (3) antibody-negative controls (n = 1766). Significant associations (α = 5 × 10-8) were investigated in a replication cohort (α = 0.05) of functional assay-confirmed HIT cases (n = 177), antibody-positive (function assay-negative) controls (n = 258), and antibody-negative controls (n = 351). We observed a strong association for positive functional assay with increasing PF4/heparin immunoglobulin-G (IgG) level (odds ratio [OR], 16.53; 95% confidence interval [CI], 13.83-19.74; P = 1.51 × 10-209) and female sex (OR, 1.15; 95% CI, 1.01-1.32; P = .034). The rs8176719 C insertion variant in ABO was significantly associated with positive functional assay status in the discovery cohort (frequency = 0.41; OR, 0.751; 95% CI, 0.682-0.828; P = 7.80 × 10-9) and in the replication cohort (OR, 0.467; 95% CI, 0.228-0.954; P = .0367). The rs8176719 C insertion, which encodes all non-O blood group alleles, had a protective effect, indicating that the rs8176719 C deletion and the O blood group were risk factors for HIT (O blood group OR, 1.42; 95% CI, 1.26-1.61; P = 3.09 × 10-8). Meta-analyses indicated that the ABO association was independent of PF4/heparin IgG levels and was stronger when functional assay-positive cases were compared with antibody-positive (functional assay-negative) controls than with antibody-negative controls. Sequencing and fine-mapping of ABO demonstrated that rs8176719 was the causal single nucleotide polymorphism (SNP). Our results clarify the biology underlying HIT pathogenesis with ramifications for prediction and may have important implications for related conditions, such as vaccine-induced thrombotic thrombocytopenia.
Asunto(s)
Estudio de Asociación del Genoma Completo , Trombocitopenia , Sistema del Grupo Sanguíneo ABO/genética , Anticoagulantes/efectos adversos , Femenino , Heparina/efectos adversos , Humanos , Inmunoglobulina G , Masculino , Factor Plaquetario 4/genética , Factores de Riesgo , Trombocitopenia/inducido químicamente , Trombocitopenia/genéticaRESUMEN
Rationale: Genetic studies suggest that SOX17 (SRY-related HMG-box 17) deficiency increases pulmonary arterial hypertension (PAH) risk. Objectives: On the basis of pathological roles of estrogen and HIF2α (hypoxia-inducible factor 2α) signaling in pulmonary artery endothelial cells (PAECs), we hypothesized that SOX17 is a target of estrogen signaling that promotes mitochondrial function and attenuates PAH development via HIF2α inhibition. Methods: We used metabolic (Seahorse) and promoter luciferase assays in PAECs together with the chronic hypoxia murine model to test the hypothesis. Measurements and Main Results: Sox17 expression was reduced in PAH tissues (rodent models and from patients). Chronic hypoxic pulmonary hypertension was exacerbated by mice with conditional Tie2-Sox17 (Sox17EC-/-) deletion and attenuated by transgenic Tie2-Sox17 overexpression (Sox17Tg). On the basis of untargeted proteomics, metabolism was the top pathway altered by SOX17 deficiency in PAECs. Mechanistically, we found that HIF2α concentrations were increased in the lungs of Sox17EC-/- and reduced in those from Sox17Tg mice. Increased SOX17 promoted oxidative phosphorylation and mitochondrial function in PAECs, which were partly attenuated by HIF2α overexpression. Rat lungs in males displayed higher Sox17 expression versus females, suggesting repression by estrogen signaling. Supporting 16α-hydroxyestrone (16αOHE; a pathologic estrogen metabolite)-mediated repression of SOX17 promoter activity, Sox17Tg mice attenuated 16αOHE-mediated exacerbations of chronic hypoxic pulmonary hypertension. Finally, in adjusted analyses in patients with PAH, we report novel associations between a SOX17 risk variant, rs10103692, and reduced plasma citrate concentrations (n = 1,326). Conclusions: Cumulatively, SOX17 promotes mitochondrial bioenergetics and attenuates PAH, in part, via inhibition of HIF2α. 16αOHE mediates PAH development via downregulation of SOX17, linking sexual dimorphism and SOX17 genetics in PAH.
Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Masculino , Ratas , Femenino , Ratones , Animales , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Pulmón , Arteria Pulmonar , Hipoxia/complicaciones , Estrógenos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar Primaria Familiar/complicaciones , Proteínas HMGB/metabolismo , Factores de Transcripción SOXF/genéticaRESUMEN
Rationale: Pulmonary arterial hypertension (PAH) is characterized by structural remodeling of pulmonary arteries and arterioles. Underlying biological processes are likely reflected in a perturbation of circulating proteins. Objectives: To quantify and analyze the plasma proteome of patients with PAH using inherited genetic variation to inform on underlying molecular drivers. Methods: An aptamer-based assay was used to measure plasma proteins in 357 patients with idiopathic or heritable PAH, 103 healthy volunteers, and 23 relatives of patients with PAH. In discovery and replication subgroups, the plasma proteomes of PAH and healthy individuals were compared, and the relationship to transplantation-free survival in PAH was determined. To examine causal relationships to PAH, protein quantitative trait loci (pQTL) that influenced protein levels in the patient population were used as instruments for Mendelian randomization (MR) analysis. Measurements and Main Results: From 4,152 annotated plasma proteins, levels of 208 differed between patients with PAH and healthy subjects, and 49 predicted long-term survival. MR based on cis-pQTL located in proximity to the encoding gene for proteins that were prognostic and distinguished PAH from health estimated an adverse effect for higher levels of netrin-4 (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.16-2.08) and a protective effect for higher levels of thrombospondin-2 (OR, 0.83; 95% CI, 0.74-0.94) on PAH. Both proteins tracked the development of PAH in previously healthy relatives and changes in thrombospondin-2 associated with pulmonary arterial pressure at disease onset. Conclusions: Integrated analysis of the plasma proteome and genome implicates two secreted matrix-binding proteins, netrin-4 and thrombospondin-2, in the pathobiology of PAH.
Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Proteínas Sanguíneas/genética , Hipertensión Pulmonar Primaria Familiar , Humanos , Netrinas , Patología Molecular , Proteoma , TrombospondinasRESUMEN
Adverse drug reactions (ADRs) are a significant health care burden. Immune-mediated adverse drug reactions (IM-ADRs) are responsible for one-fifth of ADRs but contribute a disproportionately high amount of that burden due to their severity. Variation in human leukocyte antigen ( HLA) genes has emerged as a potential preprescription screening strategy for the prevention of previously unpredictable IM-ADRs. Immunopharmacogenomics combines the disciplines of immunogenomics and pharmacogenomics and focuses on the effects of immune-specific variation on drug disposition and IM-ADRs. In this review, we present the latest evidence for HLA associations with IM-ADRs, ongoing research into biological mechanisms of IM-ADRs, and the translation of clinical actionable biomarkers for IM-ADRs, with a focus on T cell-mediated ADRs.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/inmunología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Hipersensibilidad a las Drogas/inmunología , Hipersensibilidad a las Drogas/prevención & control , Antígenos HLA/inmunología , Humanos , Farmacogenética/métodos , Linfocitos T/inmunologíaRESUMEN
Rationale: Limited information is available on racial/ethnic differences in pulmonary arterial hypertension (PAH).Objectives: Determine effects of race/ethnicity and ancestry on mortality and disease outcomes in diverse patients with PAH.Methods: Patients with Group 1 PAH were included from two national registries with genome-wide data and two local cohorts, and further incorporated in a global meta-analysis. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for transplant-free, all-cause mortality in Hispanic patients with non-Hispanic white (NHW) patients as the reference group. Odds ratios (ORs) for inpatient-specific mortality in patients with PAH were also calculated for race/ethnic groups from an additional National Inpatient Sample dataset not included in the meta-analysis.Measurements and Main Results: After covariate adjustment, self-reported Hispanic patients (n = 290) exhibited significantly reduced mortality versus NHW patients (n = 1,970) after global meta-analysis (HR, 0.60 [95% CI, 0.41-0.87]; P = 0.008). Although not significant, increasing Native American genetic ancestry appeared to account for part of the observed mortality benefit (HR, 0.48 [95% CI, 0.23-1.01]; P = 0.053) in the two national registries. Finally, in the National Inpatient Sample, an inpatient mortality benefit was also observed for Hispanic patients (n = 1,524) versus NHW patients (n = 8,829; OR, 0.65 [95% CI, 0.50-0.84]; P = 0.001). An inpatient mortality benefit was observed for Native American patients (n = 185; OR, 0.38 [95% CI, 0.15-0.93]; P = 0.034).Conclusions: This study demonstrates a reproducible survival benefit for Hispanic patients with Group 1 PAH in multiple clinical settings. Our results implicate contributions of genetic ancestry to differential survival in PAH.
Asunto(s)
Negro o Afroamericano/genética , Hispánicos o Latinos/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/mortalidad , Población Blanca/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tasa de Supervivencia , Estados Unidos/epidemiologíaRESUMEN
INTRODUCTION: National obesity prevention strategies may benefit from precision health approaches involving diverse participants in population health studies. We used cohort data from the National Institutes of Health All of Us Research Program (All of Us) Researcher Workbench to estimate population-level obesity prevalence. METHODS: To estimate state-level obesity prevalence we used data from physical measurements made during All of Us enrollment visits and data from participant electronic health records (EHRs) where available. Prevalence estimates were calculated and mapped by state for 2 categories of body mass index (BMI) (kg/m2): obesity (BMI >30) and severe obesity (BMI >35). We calculated and mapped prevalence by state, excluding states with fewer than 100 All of Us participants. RESULTS: Data on height and weight were available for 244,504 All of Us participants from 33 states, and corresponding EHR data were available for 88,840 of these participants. The median and IQR of BMI taken from physical measurements data was 28.4 (24.4- 33.7) and 28.5 (24.5-33.6) from EHR data, where available. Overall obesity prevalence based on physical measurements data was 41.5% (95% CI, 41.3%-41.7%); prevalence of severe obesity was 20.7% (95% CI, 20.6-20.9), with large geographic variations observed across states. Prevalence estimates from states with greater numbers of All of Us participants were more similar to national population-based estimates than states with fewer participants. CONCLUSION: All of Us participants had a high prevalence of obesity, with state-level geographic variation mirroring national trends. The diversity among All of Us participants may support future investigations on obesity prevention and treatment in diverse populations.
Asunto(s)
Obesidad Mórbida , Salud Poblacional , Índice de Masa Corporal , Humanos , Obesidad/epidemiología , Prevalencia , Estados Unidos/epidemiologíaRESUMEN
RATIONALE: Genetic factors are involved in acute respiratory distress syndrome (ARDS) susceptibility. Identification of novel candidate genes associated with increased risk and severity will improve our understanding of ARDS pathophysiology and enhance efforts to develop novel preventive and therapeutic approaches. OBJECTIVES: To identify genetic susceptibility targets for ARDS. METHODS: A genome-wide association study was performed on 232 African American patients with ARDS and 162 at-risk control subjects. The Identify Candidate Causal SNPs and Pathways platform was used to infer the association of known gene sets with the top prioritized intragenic SNPs. Preclinical validation of SELPLG (selectin P ligand gene) was performed using mouse models of LPS- and ventilator-induced lung injury. Exonic variation within SELPLG distinguishing patients with ARDS from sepsis control subjects was confirmed in an independent cohort. MEASUREMENTS AND MAIN RESULTS: Pathway prioritization analysis identified a nonsynonymous coding SNP (rs2228315) within SELPLG, encoding P-selectin glycoprotein ligand 1, to be associated with increased susceptibility. In an independent cohort, two exonic SELPLG SNPs were significantly associated with ARDS susceptibility. Additional support for SELPLG as an ARDS candidate gene was derived from preclinical ARDS models where SELPLG gene expression in lung tissues was significantly increased in both ventilator-induced (twofold increase) and LPS-induced (5.7-fold increase) murine lung injury models compared with controls. Furthermore, Selplg-/- mice exhibited significantly reduced LPS-induced inflammatory lung injury compared with wild-type C57/B6 mice. Finally, an antibody that neutralizes P-selectin glycoprotein ligand 1 significantly attenuated LPS-induced lung inflammation. CONCLUSIONS: These findings identify SELPLG as a novel ARDS susceptibility gene among individuals of European and African descent.
Asunto(s)
Negro o Afroamericano/genética , Estudio de Asociación del Genoma Completo , Genotipo , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/fisiopatología , Selectinas/genética , Población Blanca/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/epidemiología , Factores de Riesgo , Estados Unidos/epidemiologíaRESUMEN
Despite the availability of multiple nonheparin anticoagulants for the treatment of heparin-induced thrombocytopenia (HIT), few data are available comparing the cost-effectiveness of these agents. This analysis is particularly important when considering differences in the risk of adverse effects, routes of administration, requirements for phlebotomy and laboratory monitoring, and overall drug costs. We conducted a cost-effectiveness analysis of argatroban, bivalirudin, and fondaparinux for the treatment of suspected HIT from the institutional perspective. A 3-arm decision-tree model was developed that employs standard practices for anticoagulation monitoring. We incorporated published data on drug efficacy and probability of HIT-related thromboembolism and major bleeding. We considered both institutional costs and average wholesale price (AWP) and performed probabilistic sensitivity analyses (PSA) to address any uncertainty in model parameters. Using institutional costs, fondaparinux prevailed over both argatroban and bivalirudin in terms of cost ($151 vs $1250 and $1466, respectively) and adverse events averted (0.9989 vs 0.9957 and 0.9947, respectively). Results were consistent when AWP was used, with fondaparinux being less expensive ($555 vs $3081 and $2187, respectively) and more effective in terms of adverse events averted (0.9989 vs 0.9957 and 0.9947, respectively). The PSA confirmed our findings using both institutional costs and AWP. In conclusion, fondaparinux subcutaneous injection afforded significant advantages in terms of cost savings and adverse events averted compared with IV argatroban or bivalirudin infusions. Our data strongly suggest potential cost savings with fondaparinux and underscore the critical need for larger clinical studies of fondaparinux in the treatment of suspected HIT.
Asunto(s)
Anticoagulantes/economía , Anticoagulantes/uso terapéutico , Análisis Costo-Beneficio , Heparina/efectos adversos , Trombocitopenia/inducido químicamente , Trombocitopenia/tratamiento farmacológico , Árboles de Decisión , Humanos , Probabilidad , Estados UnidosRESUMEN
BACKGROUND: Anthracyclines are important chemotherapeutic agents, but their use is limited by cardiotoxicity. Candidate gene and genome-wide studies have identified putative risk loci for overt cardiotoxicity and heart failure, but there has been no comprehensive assessment of genomic variation influencing the intermediate phenotype of anthracycline-related changes in left ventricular (LV) function. The purpose of this study was to identify genetic factors influencing changes in LV function after anthracycline chemotherapy. METHODS: We conducted a genome-wide association study (GWAS) of change in LV function after anthracycline exposure in 385 patients identified from BioVU, a resource linking DNA samples to de-identified electronic medical record data. Variants with P values less than 1×10 were independently tested for replication in a cohort of 181 anthracycline-exposed patients from a prospective clinical trial. Pathway analysis was performed to assess combined effects of multiple genetic variants. RESULTS: Both cohorts were middle-aged adults of predominantly European descent. Among 11 candidate loci identified in discovery GWAS, one single nucleotide polymorphism near PR domain containing 2, with ZNF domain (PRDM2), rs7542939, had a combined P value of 6.5×10 in meta-analysis. Eighteen Kyoto Encyclopedia of Gene and Genomes pathways showed strong enrichment for variants associated with the primary outcome. Identified pathways related to DNA repair, cellular metabolism, and cardiac remodeling. CONCLUSION: Using genome-wide association we identified a novel candidate susceptibility locus near PRDM2. Variation in genes belonging to pathways related to DNA repair, metabolism, and cardiac remodeling may influence changes in LV function after anthracycline exposure.
Asunto(s)
Antraciclinas/farmacología , Estudio de Asociación del Genoma Completo , Transducción de Señal/genética , Función Ventricular Izquierda/efectos de los fármacos , Función Ventricular Izquierda/genética , Adulto , Estudios de Cohortes , Demografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Volumen Sistólico/genéticaRESUMEN
Pharmacogenomic Polygenic Risk Scores (PRS) have emerged as a tool to address the polygenic nature of pharmacogenetic phenotypes, increasing the potential to predict drug response. Most pharmacogenomic PRS have been extrapolated from disease-associated variants identified by genome wide association studies (GWAS), although some have begun to utilize genetic variants from pharmacogenomic GWAS. As pharmacogenomic PRS hold the promise of enabling precision medicine, including stratified treatment approaches, it is important to assess the opportunities and challenges presented by the current data. This assessment will help determine how pharmacogenomic PRS can be advanced and transitioned into clinical use. In this review, we present a summary of recent evidence, evaluate the current status, and identify several challenges that have impeded the progress of pharmacogenomic PRS. These challenges include the reliance on extrapolations from disease genetics and limitations inherent to pharmacogenomics research such as low sample sizes, phenotyping inconsistencies, among others. We finally propose recommendations to overcome the challenges and facilitate the clinical implementation. These recommendations include standardizing methodologies for phenotyping, enhancing collaborative efforts, developing new statistical methods to capitalize on drug-specific genetic associations for PRS construction. Additional recommendations include enhancing the infrastructure that can integrate genomic data with clinical predictors, along with implementing user-friendly clinical decision tools, and patient education. Ethical and regulatory considerations should address issues related to patient privacy, informed consent and safe use of PRS. Despite these challenges, ongoing research and large-scale collaboration is likely to advance the field and realize the potential of pharmacogenomic PRS.
Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Farmacogenética , Medicina de Precisión , Humanos , Farmacogenética/métodos , Herencia Multifactorial/genética , Medicina de Precisión/métodos , Fenotipo , Medición de Riesgo/métodos , Variantes Farmacogenómicas , Puntuación de Riesgo GenéticoRESUMEN
Electronic health records (EHRs) contain a vast array of phenotypic data on large numbers of individuals, often collected over decades. Due to the wealth of information, EHR data have emerged as a powerful resource to make first discoveries and identify disparities in our healthcare system. While the number of EHR-based studies has exploded in recent years, most of these studies are directed at associations with disease rather than pharmacotherapeutic outcomes, such as drug response or adverse drug reactions. This is largely due to challenges specific to deriving drug-related phenotypes from the EHR. There is great potential for EHR-based discovery in clinical pharmacology research, and there is a critical need to address specific challenges related to accurate and reproducible derivation of drug-related phenotypes from the EHR. This review provides a detailed evaluation of challenges and considerations for deriving drug-related data from EHRs. We provide an examination of EHR-based computable phenotypes and discuss cutting-edge approaches to map medication information for clinical pharmacology research, including medication-based computable phenotypes and natural language processing. We also discuss additional considerations such as data structure, heterogeneity and missing data, rare phenotypes, and diversity within the EHR. By further understanding the complexities associated with conducting clinical pharmacology research using EHR-based data, investigators will be better equipped to design thoughtful studies with more reproducible results. Progress in utilizing EHRs for clinical pharmacology research should lead to significant advances in our ability to understand differential drug response and predict adverse drug reactions.
Asunto(s)
Registros Electrónicos de Salud , Farmacología Clínica , Registros Electrónicos de Salud/estadística & datos numéricos , Humanos , Farmacología Clínica/métodos , Fenotipo , Procesamiento de Lenguaje Natural , Investigación Biomédica , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiologíaRESUMEN
Heparin-induced thrombocytopenia (HIT) is an antibody-mediated immune response against complexes of heparin and platelet factor 4 (PF4). The electrostatic interaction between heparin and PF4 is critical for the anti-PF4/heparin antibody response seen in HIT. The binding of metal cations to heparin induces conformational changes and charge neutralization of the heparin molecule, and cation-heparin binding can modulate the specificity and affinity for heparin-binding partners. However, the effects of metal cation binding to heparin in the context of anti-PF4/heparin antibody response have not been determined. Here, we utilized inductively coupled plasma mass spectrometry (ICP-MS) to quantify 16 metal cations in patient plasma and tested for correlation with anti-PF4/heparin IgG levels and platelet count after clinical suspicion of HIT in a cohort of heparin-treated patients. The average age of the cohort (n = 32) was 60.53 (SD = 14.31) years old, had a mean anti-PF4/heparin antibody optical density [OD405] of 0.93 (SD = 1.21) units, and was primarily female (n = 23). Patients with positive anti-PF4/heparin antibody test results (OD405 ≥ 0.5 units) were younger, had increased weight and BMI, and were more likely to have a positive serotonin release assay (SRA) result compared to antibody-negative patients. We observed statistical differences between antibody-positive and -negative groups for sodium and aluminum and significant correlations of anti-PF4/heparin antibody levels with sodium and silver. While differences in sodium concentrations were associated with antibody-positive status and correlated with antibody levels, no replication was performed. Additional studies are warranted to confirm our observed association, including in vitro binding studies and larger observational cohorts.
Asunto(s)
Anticoagulantes , Heparina , Factor Plaquetario 4 , Trombocitopenia , Humanos , Factor Plaquetario 4/inmunología , Trombocitopenia/inducido químicamente , Trombocitopenia/inmunología , Trombocitopenia/sangre , Trombocitopenia/diagnóstico , Femenino , Heparina/efectos adversos , Heparina/inmunología , Persona de Mediana Edad , Masculino , Anciano , Anticoagulantes/efectos adversos , Anticoagulantes/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Recuento de Plaquetas , Autoanticuerpos/sangre , Adulto , Metales , Biomarcadores/sangreRESUMEN
Heparin-induced thrombocytopenia (HIT) is an antibody-mediated immune response against complexes of heparin and platelet factor 4 (PF4). The electrostatic interaction between heparin and PF4 is critical for the anti-PF4/heparin antibody response seen in HIT. The binding of metal cations to heparin induces conformational changes and charge neutralization of the heparin molecule, and cation-heparin binding can modulate the specificity and affinity for heparin-binding partners. However, the effects of metal cation binding to heparin in the context of anti-PF4/heparin antibody response have not been determined. Here, we utilized inductively coupled plasma mass spectrometry (ICP-MS) to quantify 16 metal cations in patient plasma and tested for correlation with anti-PF4/heparin IgG levels and platelet count after clinical suspicion of HIT in a cohort of heparin-treated patients. The average age of the cohort (n = 32) was 60.53 (SD = 14.31) years old, had a mean anti-PF4/heparin antibody optical density [OD405] of 0.93 (SD = 1.21) units and was primarily female (n = 23). Patients with positive anti-PF4/heparin antibody test results (OD405 ≥ 0.5 units) were younger, had increased weight and BMI, and were more likely to have a positive serotonin release assay (SRA) result compared to antibody negative patients. We observed statistical differences between antibody positive and negative groups for sodium and aluminum and significant correlations of anti-PF4/heparin antibody levels with sodium and silver. While differences in sodium concentrations were associated with antibody positive status and correlated with antibody levels, no replication was performed. Additional studies are warranted to confirm our observed association, including in vitro binding studies and larger observational cohorts.
RESUMEN
OBJECTIVES: ABO blood types have widespread clinical use and robust associations with disease. The purpose of this study is to evaluate the portability and suitability of tag single-nucleotide polymorphisms (tSNPs) used to determine ABO alleles and blood types across diverse populations in published literature. MATERIALS AND METHODS: Bibliographic databases were searched for studies using tSNPs to determine ABO alleles. We calculated linkage between tSNPs and functional variants across inferred continental ancestry groups from 1000 Genomes. We compared r2 across ancestry and assessed real-world consequences by comparing tSNP-derived blood types to serology in a diverse population from the All of Us Research Program. RESULTS: Linkage between functional variants and O allele tSNPs was significantly lower in African (median r2 = 0.443) compared to East Asian (r2 = 0.946, P = 1.1 × 10-5) and European (r2 = 0.869, P = .023) populations. In All of Us, discordance between tSNP-derived blood types and serology was high across all SNPs in African ancestry individuals and linkage was strongly correlated with discordance across all ancestries (ρ = -0.90, P = 3.08 × 10-23). DISCUSSION: Many studies determine ABO blood types using tSNPs. However, tSNPs with low linkage disequilibrium promote misinference of ABO blood types, particularly in diverse populations. We observe common use of inappropriate tSNPs to determine ABO blood type, particularly for O alleles and with some tSNPs mistyping up to 58% of individuals. CONCLUSION: Our results highlight the lack of transferability of tSNPs across ancestries and potential exacerbation of disparities in genomic research for underrepresented populations. This is especially relevant as more diverse cohorts are made publicly available.
RESUMEN
Background: Genetic variation in APOE is associated with altered lipid metabolism, as well as cardiovascular and neurodegenerative disease risk. However, prior studies are largely limited to European ancestry populations and differential risk by sex and ancestry has not been widely evaluated. We utilized a phenome-wide association study (PheWAS) approach to explore APOE-associated phenotypes in the All of Us Research Program. Methods: We determined APOE alleles for 181,880 All of Us participants with whole genome sequencing and electronic health record (EHR) data, representing seven gnomAD ancestry groups. We tested association of APOE variants, ordered based on Alzheimer's disease risk hierarchy (ε2/ε2<ε2/ε3<ε3/ε3<ε2/ε4<ε3/ε4<ε4/ε4), with 2,318 EHR-derived phenotypes. Bonferroni-adjusted analyses were performed overall, by ancestry, by sex, and with adjustment for social determinants of health (SDOH). Findings: In the overall cohort, PheWAS identified 17 significant associations, including an increased odds of hyperlipidemia (OR 1.15 [1.14-1.16] per APOE genotype group; P=1.8×10-129), dementia, and Alzheimer's disease (OR 1.55 [1.40-1.70]; P=5×10-19), and a reduced odds of fatty liver disease (OR 0.93 [0.90-0.95]; P=1.6×10-9) and chronic liver disease. ORs were similar after SDOH adjustment and by sex, except for an increased number of cardiovascular associations in males, and decreased odds of noninflammatory disorders of vulva and perineum in females (OR 0.89 [0.84-0.94]; P=1.1×10-5). Significant heterogeneity was observed for hyperlipidemia and mild cognitive impairment across ancestry. Unique associations by ancestry included transient retinal arterial occlusion in the European ancestry group, and first-degree atrioventricular block in the American Admixed/Latino ancestry group. Interpretation: We replicate extensive phenotypic associations with APOE alleles in a large, diverse cohort, despite limitations in accuracy for EHR-derived phenotypes. We provide a comprehensive catalog of APOE-associated phenotypes and present evidence of unique phenotypic associations by sex and ancestry, as well as heterogeneity in effect size across ancestry.
RESUMEN
Pharmacogenomics promises improved outcomes through individualized prescribing. However, the lack of diversity in studies impedes clinical translation and equitable application of precision medicine. We evaluated the frequencies of PGx variants, predicted phenotypes, and medication exposures using whole genome sequencing and EHR data from nearly 100k diverse All of Us Research Program participants. We report 100% of participants carried at least one pharmacogenomics variant and nearly all (99.13%) had a predicted phenotype with prescribing recommendations. Clinical impact was high with over 20% having both an actionable phenotype and a prior exposure to an impacted medication with pharmacogenomic prescribing guidance. Importantly, we also report hundreds of alleles and predicted phenotypes that deviate from known frequencies and/or were previously unreported, including within admixed American and African ancestry groups.
RESUMEN
Disparities in data underlying clinical genomic interpretation is an acknowledged problem, but there is a paucity of data demonstrating it. The All of Us Research Program is collecting data including whole-genome sequences, health records, and surveys for at least a million participants with diverse ancestry and access to healthcare, representing one of the largest biomedical research repositories of its kind. Here, we examine pathogenic and likely pathogenic variants that were identified in the All of Us cohort. The European ancestry subgroup showed the highest overall rate of pathogenic variation, with 2.26% of participants having a pathogenic variant. Other ancestry groups had lower rates of pathogenic variation, including 1.62% for the African ancestry group and 1.32% in the Latino/Admixed American ancestry group. Pathogenic variants were most frequently observed in genes related to Breast/Ovarian Cancer or Hypercholesterolemia. Variant frequencies in many genes were consistent with the data from the public gnomAD database, with some notable exceptions resolved using gnomAD subsets. Differences in pathogenic variant frequency observed between ancestral groups generally indicate biases of ascertainment of knowledge about those variants, but some deviations may be indicative of differences in disease prevalence. This work will allow targeted precision medicine efforts at revealed disparities.