Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Foods ; 12(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36673403

RESUMEN

This investigation aimed to optimize the time, pH, pressure, and temperature of sugarcane juice pasteurization and to develop a "ready to serve" bottled sugarcane juice with a high preservation efficiency. Fresh sugarcane juice was extracted from sugarcane genotype Co 89003, and beverage samples were collected using three different treatments: sulphitation of juice with the addition of potassium metabisulphite (KMS-25, 50, 100, and 150 ppm), acidification of juice (addition of citric acid, to reduce the pH of the juice to 4.8, 4.5, and 4.25), and steam treatment of the canes (5 min, 10, and 15 min at 7 psi). In all treatments, the juice was pasteurized in glass bottles @ 65 °C for 25 min and stored at low temperature (5 °C) in pre-sterilized glass bottles. Juice properties such as the ˚Brix, total sugar, pH, and total phenolic content decreased with storage, whereas the microbial count, titrable acidity, and reducing sugar content significantly increased during storage. The addition of KMS, citric acid, and the steam treatment reduced the browning of juice and maintained the color of juice during storage, by inhibiting the polyphenol oxidase enzyme activity, from 0.571 unit/mL to 0.1 unit/mL. Among the selected treatments, sugarcane juice with KMS (100 and 150 ppm) and steam treatment of the canes for 5 and 10 min at 7 psi showed the minimum changes in physico-chemical properties, sensory qualities, and restricted microbial growth. Thesulphitation treatment with pasteurization proved best for increasing the shelf life of sugarcane juice upto 90 days with refrigeration. Similarly, the steam-subjected cane juice (10 and 15 min at 7 psi) could be effectively preserved for upto 30 days with refrigeration, without any preservative.

2.
3 Biotech ; 10(10): 440, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33014683

RESUMEN

Sugarcane (Saccharum spp.) crop is vulnerable to many abiotic stresses such as drought, salinity, waterlogging, cold and high temperature due to climate change. Over the past few decades new breeding and genomic approaches have been used to enhance the genotypic performance under abiotic stress conditions. In sugarcane, introgression of genes from wild species and allied genera for abiotic stress tolerance traits plays a significant role in the development of several stress-tolerant varieties. Moreover, the genomics and transcriptomics approaches have helped to elucidate the key genes/TFs and pathways involved in abiotic stress tolerance in sugarcane. Several novel miRNAs families /proteins or regulatory elements that are responsible for drought, salinity, and cold tolerance have been identified through high-throughput sequencing. The existing sugarcane monoploid genome sequence information opens new gateways and opportunities for researchers to improve the desired traits through efficient genome editing tools, such as the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas) system. TALEN mediated mutations in a highly conserved region of the caffeic acid O-methyltransferase (COMT) of sugarcane significantly reduces the lignin content in the cell wall which is amenable for biofuel production from lignocellulosic biomass. In this review, we focus on current breeding with genomic approaches and their substantial role in enhancing cane production under the abiotic stress conditions, which is expected to provide new insights to plant breeders and biotechnologists to modify their strategy in developing stress-tolerant sugarcane varieties, which can highlight the future demand of cane, bio-energy, and viability of sugar industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA