Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Immunol ; 212(5): 771-784, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197634

RESUMEN

Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota during the fermentation of dietary fibers as secondary metabolites. Several recent studies reported that SCFAs modulate the development and function of immune-related cells. However, the molecular mechanisms by which SCFAs regulate mast cells (MCs) remain unclear. In the current study, we analyzed the function and gene expression of mouse MCs in the presence of SCFAs in vitro and in vivo. We found that the oral administration of valerate or butyrate ameliorated passive systemic anaphylaxis and passive cutaneous anaphylaxis in mice. The majority of SCFAs, particularly propionate, butyrate, valerate, and isovalerate, suppressed the IgE-mediated degranulation of bone marrow-derived MCs, which were eliminated by the Gi protein inhibitor pertussis toxin and by the knockdown of Gpr109a. A treatment with the HDAC inhibitor trichostatin A also suppressed IgE-mediated MC activation and reduced the surface expression level of FcεRI on MCs. Acetylsalicylic acid and indomethacin attenuated the suppressive effects of SCFAs on degranulation. The degranulation degree was significantly reduced by PGE2 but not by PGD2. Furthermore, SCFAs enhanced PGE2 release from stimulated MCs. The SCFA-mediated amelioration of anaphylaxis was exacerbated by COX inhibitors and an EP3 antagonist, but not by an EP4 antagonist. The administration of niacin, a ligand of GPR109A, alleviated the symptoms of passive cutaneous anaphylaxis, which was inhibited by cyclooxygenase inhibitors and the EP3 antagonist. We conclude that SCFAs suppress IgE-mediated activation of MCs in vivo and in vitro involving GPR109A, PGE2, and epigenetic regulation.


Asunto(s)
Anafilaxia , Niacina , Ratones , Animales , Anafilaxia/tratamiento farmacológico , Anafilaxia/metabolismo , Niacina/farmacología , Niacina/metabolismo , Dinoprostona/metabolismo , Butiratos/farmacología , Butiratos/metabolismo , Valeratos/metabolismo , Mastocitos/metabolismo , Epigénesis Genética , Inmunoglobulina E/metabolismo , Degranulación de la Célula
2.
Eur J Immunol ; : e2451094, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980255

RESUMEN

The antiallergic effects of gut microbiota have been attracting attention in recent years, but the underlying cellular and molecular mechanisms have not yet been fully understood. In this study, we aimed to investigate these mechanisms specifically focusing on mast cells. Mast cells retain intracellular granules containing various inflammatory mediators such as histamine, which are released outside the cells upon IgE and allergen stimulation. We previously reported that increased expression of the transcription factor, CCAAT/enhancer-binding protein α (C/EBPα), suppresses granule formation in mast cells and that Lacticaseibacillus casei JCM1134T (LC) upregulates C/EBPα levels. Here, granule formation in mouse bone marrow-derived mast cells was suppressed in a MyD88-dependent manner after LC treatment due to C/EBPα-dependent downregulation of the genes encoding serglycin (SRGN) and mast cell protease 4 (Mcpt4). Furthermore, C/EBPα expression was regulated by DNA methylation in the 5' region far upstream of the transcription start site. LC suppressed DNA methylation of specific CpG motifs in the 5' region of the C/EBPα gene. These results conclude that specific gut microbial components, such as those from LC, suppress granule formation in mast cells by inhibiting SRGN and Mcpt4 expression via reduced C/EBPα gene methylation.

3.
J Immunol ; 209(10): 1851-1859, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36426937

RESUMEN

Histamine-releasing factor (HRF) is a multifunctional protein with fundamental intracellular functions controlling cell survival and proliferation. HRF is also secreted during allergic reactions and promotes IgE-mediated activation of mast cells and basophils. In this study, we investigated HRF secretion and its relevance to airway inflammation. HRF monomers were constitutively secreted from BEAS-2B human bronchial epithelial cells (HBECs) and converted to oligomers over the course of culture. Stimulation with house dust mite (HDM) extract increased HRF secretion substantially. Several cytokines involved in asthma pathogenesis showed moderate effects on HRF secretion but dramatically enhanced HDM-induced HRF secretion. HDM-induced HRF secretion from BEAS-2B cells and normal HBECs proceeded via TLR2. Consistent with this, multiple TLR2 ligands, including Der p 2, Der p 5, Der p 13, and Der p 21, induced HRF secretion. Der p 10 (tropomyosin) also promoted HRF secretion. Cell death or incubation with adenosine and ATP, compounds released upon cell death, also enhanced HRF secretion. Furthermore, intranasal administration of recombinant HRF elicited robust airway inflammation in HDM-sensitized mice in an FcεRI-dependent manner. Therefore, we conclude that HRF is a novel alarmin that promotes allergic airway inflammation.


Asunto(s)
Alarminas , Citocinas , Humanos , Animales , Ratones , Histamina , Proteína Tumoral Controlada Traslacionalmente 1 , Receptor Toll-Like 2 , Factores Inmunológicos , Antígenos Dermatofagoides , Muerte Celular , Inflamación , Alérgenos , Pyroglyphidae , Fibrinógeno
4.
J Allergy Clin Immunol ; 152(3): 633-640.e4, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37301412

RESUMEN

BACKGROUND: Histamine-releasing factor (HRF) is implicated in allergic diseases. We previously showed its pathogenic role in murine models of asthma. OBJECTIVE: We aim to present data analysis from 3 separate human samples (sera samples from asthmatic patients, nasal washings from rhinovirus [RV]-infected individuals, and sera samples from patients with RV-induced asthma exacerbation) and 1 mouse sample to investigate correlates of HRF function in asthma and virus-induced asthma exacerbations. METHODS: Total IgE and HRF-reactive IgE/IgG as well as HRF in sera from patients with mild/moderate asthma or severe asthma (SA) and healthy controls (HCs) were quantified by ELISA. HRF secretion in culture media from RV-infected adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells and in nasal washings from experimentally RV-infected subjects was analyzed by Western blotting. HRF-reactive IgE/IgG levels in longitudinal serum samples from patients with asthma exacerbations were also quantified. RESULTS: HRF-reactive IgE and total IgE levels were higher in patients with SA than in HCs, whereas HRF-reactive IgG (and IgG1) level was lower in asthmatic patients versus HCs. In comparison with HRF-reactive IgElow asthmatic patients, HRF-reactive IgEhigh asthmatic patients had a tendency to release more tryptase and prostaglandin D2 on anti-IgE stimulation of bronchoalveolar lavage cells. RV infection induced HRF secretion from adenovirus-12 SV40 hybrid virus transformed bronchial epithelial cells, and intranasal RV infection of human subjects induced increased HRF secretion in nasal washes. Asthmatic patients had higher levels of HRF-reactive IgE at the time of asthma exacerbations associated with RV infection, compared with those after the resolution. This phenomenon was not seen in asthma exacerbations without viral infections. CONCLUSIONS: HRF-reactive IgE is higher in patients with SA. RV infection induces HRF secretion from respiratory epithelial cells both in vitro and in vivo. These results suggest the role of HRF in asthma severity and RV-induced asthma exacerbation.


Asunto(s)
Asma , Infecciones por Enterovirus , Infecciones por Picornaviridae , Humanos , Animales , Ratones , Histamina , Rhinovirus , Inmunoglobulina E , Inmunoglobulina G , Infecciones por Picornaviridae/complicaciones
5.
J Immunol ; 207(12): 3098-3106, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34799426

RESUMEN

Rodent mast cells are classified into two major subsets, mucosal mast cells (MMCs) and connective tissue mast cells. MMCs arise from mast cell progenitors that are mobilized from the bone marrow to mucosal tissues in response to allergic inflammation or helminth infection. TGF-ß is known as an inducer of MMC differentiation in mucosal tissues, but we have previously found that Notch receptor-mediated signaling also leads to the differentiation. Here, we examined the relationship between Notch and TGF-ß signaling in MMC differentiation using mouse bone marrow-derived mast cells (BMMCs). We found that the coexistence of Notch and TGF-ß signaling markedly upregulates the expression of MMC markers, mouse mast cell protease (mMCP)-1, mMCP-2, and αE integrin/CD103, more than Notch or TGF-ß signaling alone, and that their signals act interdependently to induce these marker expressions. Notch and TGF-ß-mediated transcription of MMC marker genes were both dependent on the TGF-ß signaling transducer SMAD4. In addition, we also found that Notch signaling markedly upregulated mMCP-1 and mMCP-2 expression levels through epigenetic deregulation of the promoter regions of these genes, but did not affect the promoter of the CD103-encoding gene. Moreover, forced expression of the constitutively active Notch2 intracellular domain in BMMCs showed that Notch signaling promotes the nuclear localization of SMADs 3 and 4 and causes SMAD4-dependent gene transcription. These findings indicate that Notch and TGF-ß signaling play interdependent roles in inducing the differentiation and maturation of MMCs. These roles may contribute to the rapid expansion of the number of MMCs during allergic mucosal inflammation.


Asunto(s)
Mastocitos , Factor de Crecimiento Transformador beta , Animales , Expresión Génica , Inflamación/metabolismo , Mastocitos/metabolismo , Ratones , Membrana Mucosa , Factor de Crecimiento Transformador beta/metabolismo
6.
J Immunol ; 205(3): 822-829, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611724

RESUMEN

PD-L2, which has been identified as a PD-1 ligand, is specifically expressed in dendritic cells (DCs) and macrophages. The transcription factors that determine the cell type-specific expression of PD-L2 are largely unknown, although PD-1 and its ligands, which have been shown to play important roles in T cell suppression, have been vigorously analyzed in the field of cancer immunology. To reveal the mechanism by which Pdcd1lg2 gene expression is regulated, we focused on DCs, which play key roles in innate and acquired immunity. The knockdown of the hematopoietic cell-specific transcription factors PU.1 and IRF4 decreased PD-L2 expression in GM-CSF-induced mouse bone marrow-derived DCs. Chromatin immunoprecipitation assays, luciferase assays, and electrophoretic mobility shift assays demonstrated that PU.1 and IRF4 bound directly to the Pdcd1lg2 gene via an Ets-IRF composite element sequence and coordinately transactivated the Pdcd1lg2 gene. Furthermore, PU.1 knockdown reduced the histone acetylation of the Pdcd1lg2 gene. The knockdown of the typical histone acetyltransferase p300, which has been reported to interact with PU.1, decreased the expression and H3K27 acetylation of the Pdcd1lg2 gene. GM-CSF stimulation upregulated the Pdcd1lg2 gene expression, which was accompanied by an increase in PU.1 binding and histone acetylation in Flt3L-generated mouse bone marrow-derived DCs. The involvement of PU.1, IRF4, and p300 were also observed in mouse splenic DCs. Overall, these results indicate that PU.1 positively regulates Pdcd1lg2 gene expression as a transactivator and an epigenetic regulator in DCs.


Asunto(s)
Células Dendríticas/inmunología , Epigénesis Genética/inmunología , Factores Reguladores del Interferón/inmunología , Proteína 2 Ligando de Muerte Celular Programada 1/inmunología , Proteínas Proto-Oncogénicas/inmunología , Transactivadores/inmunología , Activación Transcripcional/inmunología , Animales , Células Dendríticas/citología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C
7.
J Immunol ; 204(6): 1641-1649, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32005755

RESUMEN

Mouse mast cell proteases (mMCP)-1 and -2 are specifically expressed in mucosal mast cells (MCs). However, the transcriptional regulation mechanism of the Mcpt1 and Mcpt2 genes induced in mucosal MCs is largely unknown. In the current study, we found that TGF-ß stimulation drastically induced upregulation of Mcpt1 and Mcpt2 mRNA in mouse bone marrow-derived MCs (BMMCs). TGF-ß-induced expression of Mcpt1 and Mcpt2 was markedly suppressed by transfection with small interfering RNA targeting Smad2 or Smad4 and moderately reduced by Smad3 small interfering RNA. We next examined the roles of the hematopoietic cell-specific transcription factors GATA1 and GATA2 in the expression of Mcpt1 and Mcpt2 and demonstrated that knockdown of GATA1 and GATA2 reduced the mRNA levels of Mcpt1 and Mcpt2 in BMMCs. The recruitment of GATA2 and acetylation of histone H4 of the highly conserved GATA-Smad motifs, which were localized in the distal regions of the Mcpt1 and Mcpt2 genes, were markedly increased by TGF-ß stimulation, whereas the level of GATA2 binding to the proximal GATA motif was not affected by TGF-ß. A reporter assay showed that TGF-ß stimulation upregulated GATA2-mediated transactivation activity in a GATA-Smad motif-dependent manner. We also observed that GATA2 and Smad4 interacted in TGF-ß-stimulated BMMCs via immunoprecipitation and Western blotting analysis. Taken together, these results demonstrate that TGF-ß induced mMCP-1 and -2 expression by accelerating the recruitment of GATA2 to the proximal regions of the Mcpt1 and Mcpt2 genes in mucosal MCs.


Asunto(s)
Quimasas/genética , Inmunidad Mucosa/genética , Mastocitos/inmunología , Activación Transcripcional/inmunología , Animales , Células Cultivadas , Elementos de Facilitación Genéticos/genética , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mastocitos/metabolismo , Ratones , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Cultivo Primario de Células , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba/inmunología
8.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955959

RESUMEN

Mast cells (MCs) play key roles in IgE-mediated immunoresponses, including in the protection against parasitic infections and the onset and/or symptoms of allergic diseases. IgE-mediated activation induces MCs to release mediators, including histamine and leukotriene, as an early response, and to produce cytokines as a late phase response. Attempts have been made to identify novel antiallergic compounds from natural materials such as Chinese medicines and food ingredients. We herein screened approximately 60 compounds and identified salicylaldehyde, an aromatic aldehyde isolated from plant essential oils, as an inhibitor of the IgE-mediated activation of MCs. A degranulation assay, flow cytometric analyses, and enzyme-linked immunosorbent assays revealed that salicylaldehyde inhibited the IgE-mediated degranulation and cytokine expression of bone-marrow-derived MCs (BMMCs). The salicylaldehyde treatment reduced the surface expression level of FcεRI, the high affinity receptor for IgE, on BMMCs, and suppressed the IgE-induced phosphorylation of tyrosine residues in intercellular proteins, possibly Lyn, Syk, and Fyn, in BMMCs. We also examined the effects of salicylaldehyde in vivo using passive anaphylaxis mouse models and found that salicylaldehyde administration significantly enhanced the recovery of a reduced body temperature due to systemic anaphylaxis and markedly suppressed ear swelling, footpad swelling, and vascular permeability in cutaneous anaphylaxis.


Asunto(s)
Anafilaxia , Mastocitos , Aldehídos/metabolismo , Anafilaxia/tratamiento farmacológico , Anafilaxia/metabolismo , Animales , Degranulación de la Célula , Citocinas/metabolismo , Inmunoglobulina E/metabolismo , Mastocitos/metabolismo , Ratones , Receptores de IgE/metabolismo , Transducción de Señal
9.
Int Immunol ; 32(2): 143-150, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630176

RESUMEN

Mast cells (MCs) play a central role in IgE-dependent immune responses. PPARγ is a nuclear receptor that is essential for adipocyte differentiation and insulin sensitivity. Although PPARγ is expressed in activated MCs, the effect of PPARγ suppression in IgE-mediated activation of MCs is largely unknown. In the current study, we evaluated the effect of PPARγ knockdown on the function of IgE plus antigen (Ag)-stimulated MCs using siRNA-transfected bone marrow-derived MCs (BMMCs). We found that the mRNA expression level of cytokines in IgE/Ag-stimulated BMMCs was significantly increased in PPARγ knockdown BMMCs, and IgE/Ag-mediated degranulation and the protein production level of TNF-α was moderately increased by PPARγ knockdown, whereas the cell surface expression level of FcεRI was not affected by PPARγ knockdown. Oral administration of pioglitazone (PPARγ agonist) significantly suppressed body temperature change of mice in passive systemic anaphylaxis, supporting the inhibitory functions of PPARγ in IgE/Ag-dependent activation of MCs in vivo. IgE-mediated up-regulation of mRNA levels of Ptgs2 (encoding COX-2) was drastically enhanced in PPARγ knockdown BMMCs. Although several prostaglandin (PG) derivatives are known to be ligands for PPARγ, treatment with a COX inhibitor, acetyl salicylic acid, up-regulated the IgE-mediated increase of Il13, Tnf and Ptgs2 mRNA levels in a synergistic manner with PPARγ siRNA. Knockdown of COX-1 and/or COX-2 by siRNA showed that suppression of IgE/Ag-mediated activation was mainly dependent on COX-1. Taken together, these results indicate that PPARγ suppresses IgE/Ag-induced transactivation of cytokine genes and the Ptgs2 gene in MCs in a manner distinguishable from that of PGs.


Asunto(s)
Células de la Médula Ósea/inmunología , Inmunoglobulina E/inmunología , Mastocitos/inmunología , PPAR gamma/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/agonistas , PPAR gamma/deficiencia , ARN Interferente Pequeño/farmacología
10.
FASEB J ; 34(11): 14810-14819, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32964554

RESUMEN

Dendritic cells (DCs) and T cells play important roles in immune regulation, and modulating their function is an approach for developing preventive or therapeutic strategies against immune disorders. Herein, the effect of pterostilbene (PSB) (3',5'-dimethoxy-resveratrol)-a resveratrol-related polyphenol found in blueberries-on immune regulation was evaluated. Using an in vitro co-culture system, PSB was found to exert the strongest inhibitory effect among all tested resveratrol derivatives on DC-mediated T cell proliferation; moreover, PSB treatment decreased the Th1 and Th17 populations and increased the regulatory T cell (Treg) population. Upon co-stimulation with anti-CD3 and anti-CD28 antibodies, PSB inhibited CD4+ T cell proliferation and differentiation into Th1 cells. Additionally, PSB acted on DCs to suppress the lipopolysaccharide-induced transactivation of genes encoding antigen presentation-related molecules and inflammatory cytokines by attenuating the DNA-binding ability of the transcription factor PU.1. Furthermore, PSB promoted DC-mediated Foxp3+ Treg differentiation, and PU.1 knockdown increased DC-induced Treg activity. Oral administration of PSB alleviated the symptoms of dextran sulfate sodium-induced colitis and decreased tumor necrosis factor-α expression in mice. Thus, PSB treatment ameliorates colonic inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Células Dendríticas/inmunología , Estilbenos/farmacología , Linfocitos T Reguladores/inmunología , Animales , Antiinflamatorios/uso terapéutico , Línea Celular , Proliferación Celular , Células Cultivadas , Colitis Ulcerosa/inmunología , Colon/efectos de los fármacos , Colon/inmunología , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Factores de Transcripción Forkhead/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/metabolismo , Estilbenos/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/fisiología , Células TH1/inmunología , Células TH1/fisiología , Células Th17/inmunología , Células Th17/fisiología , Transactivadores/metabolismo
11.
Biochem Biophys Res Commun ; 530(1): 342-347, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828309

RESUMEN

We evaluated the effect of gut bacterial metabolites of polyunsaturated fatty acids on inflammation and found that 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC) strikingly suppressed LPS-induced IL-6 release from bone marrow-derived macrophages (BMMs), which was accompanied by reduced mRNA expression of Il6, TNF, and Il1b. γKetoC decreased the cAMP concentration in BMMs, suggesting that γKetoC stimulated G protein-coupled receptors. A Gq agonist significantly suppressed LPS-induced IL-6 expression in BMMs, whereas a Gi inhibitor partially abrogated γKetoC-mediated IL-6 suppression. Cytosolic Ca2+ was markedly increased by γKetoC, which was partly but not fully abrogated by an ion channel inhibitor. Taken together, these data suggest that γKetoC suppresses inflammatory cytokine expression in macrophages primarily through Gq and partially through Gi. γKetoC suppressed osteoclast development and IL-6 expression in synovial fibroblasts from rheumatoid arthritis (RA) patients, suggesting the beneficial effect of γKetoC on the prevention or treatment of RA.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Microbioma Gastrointestinal , Lactobacillales/metabolismo , Monocitos/metabolismo , Animales , Artritis Reumatoide/etiología , Artritis Reumatoide/metabolismo , Línea Celular , Células Cultivadas , Citocinas/metabolismo , Femenino , Humanos , Inflamación/etiología , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores Protectores , Células RAW 264.7
12.
FASEB J ; 33(10): 11481-11491, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31314592

RESUMEN

C-C chemokine receptor type 7 (CCR7) is essential for migration of dendritic cells (DCs) to draining lymph nodes. PU.1/Spi1 is a transcription factor playing a critical role in the gene regulation of DCs. PU.1 knockdown decreased the expression of CCR7 in bone marrow-derived DCs and subsequently attenuated migration in vitro and in vivo. Reporter assays, EMSA, and chromatin immunoprecipitation assays revealed that PU.1 binds to the most proximal Ets motif of the Ccr7 promoter, which is involved in transcriptional activation. The CCR7 expression level, which was higher in the programmed cell death 1 ligand 2 (PD-L2)+ population than in the PD-L2- population and was markedly suppressed by TGF-ß treatment, coincided with the binding level of PU.1 to the Ccr7 promoter. The PU.1 binding level in CCR7high mesenteric lymph nodes DCs was higher than in other DC subtypes. The involvement of PU.1 in the expression of the CCR7 gene was also observed in human DCs. We conclude that PU.1 plays a pivotal role in DC migration by transactivating the CCR7 gene via the Ets motif in the promoter in both humans and mice.-Yashiro, T., Takeuchi, H., Nakamura, S., Tanabe, A., Hara, M., Uchida, K., Okumura, K., Kasakura, K., Nishiyama, C. PU.1 plays a pivotal role in dendritic cell migration from the periphery to secondary lymphoid organs via regulating CCR7 expression.


Asunto(s)
Movimiento Celular/genética , Células Dendríticas/fisiología , Ganglios Linfáticos/fisiología , Tejido Linfoide/fisiología , Proteínas Proto-Oncogénicas/genética , Receptores CCR7/genética , Transactivadores/genética , Animales , Línea Celular , Femenino , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Activación Transcripcional/genética
13.
J Immunol ; 201(12): 3677-3682, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30413670

RESUMEN

RALDH2 expressed in dendritic cells (DCs) plays a critical role in the development of regulatory T cells in mesenteric lymph nodes. Despite the importance of RALDH2 in intestinal immunity, little is known about the mechanism of DC-specific expression of RALDH2. In the current study, we focused on the hematopoietic cell-specific transcription factors PU.1 and IRF4 as the determinants of Aldh1a2 gene expression. The mRNA level of Aldh1a2, and subsequently the enzyme activity, were decreased by knockdown of PU.1 and IRF4 in bone marrow-derived DCs (BMDCs) of BALB/c mice. Chromatin immunoprecipitation assays showed that PU.1 and IRF4 bound to the Aldh1a2 gene ∼2 kb upstream from the transcription start site in BMDCs. A reporter assay and an EMSA revealed that the Aldh1a2 promoter was synergistically transactivated by a heterodimer composed with PU.1 and IRF4 via the EICE motif at -1961/-1952 of the gene. The effect of small interfering RNAs for Spi1 and Irf4 and specific binding of PU.1 and IRF4 on the Aldh1a2 gene were also observed in DCs freshly isolated from spleen and mesenteric lymph nodes, respectively. GM-CSF stimulation upregulated the Aldh1a2 transcription in Flt3 ligand-generated BMDCs, in which the IRF4 expression and the PU.1 recruitment to the Aldh1a2 promoter were enhanced. We conclude that PU.1 and IRF4 are transactivators of the Aldh1a2 gene in vitro and ex vivo.


Asunto(s)
Células Dendríticas/fisiología , Factores Reguladores del Interferón/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Linfocitos T Reguladores/inmunología , Transactivadores/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factores Reguladores del Interferón/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , Retinal-Deshidrogenasa , Transactivadores/genética , Activación Transcripcional , Tirosina Quinasa 3 Similar a fms/inmunología
14.
J Immunol ; 199(8): 2958-2967, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28893954

RESUMEN

NR4A3/NOR1 belongs to the NR4A subfamily of the nuclear hormone receptor superfamily, which is activated in a ligand-independent manner. To examine the role of NR4A3 in gene expression of dendritic cells (DCs), we introduced NR4A3 small interfering RNA (siRNA) into bone marrow-derived DCs and determined the expression levels of mRNA and proteins of cytokines, cell surface molecules, NF-κB signaling-related proteins, and transcription factors. The expression level of NR4A3 was markedly upregulated by TLR-mediated stimulation in DCs. NR4A3 knockdown significantly suppressed LPS, CpG, or poly(I:C)-mediated upregulation of CD80, CD86, IL-10, IL-6, and IL-12. Proliferation and IL-2 production levels of T cells cocultured with NR4A3 knocked-down DCs were significantly lower than that of T cells cocultured with control DCs. Furthermore, the expression of IKKß, IRF4, and IRF8 was significantly decreased in NR4A3 siRNA-introduced bone marrow-derived DCs. The knockdown experiments using siRNAs for IKKß, IRF4, and/or IRF8 indicated that LPS-induced upregulation of IL-10 and IL-6 was reduced in IKKß knocked-down cells, and that the upregulation of IL-12 was suppressed by the knockdown of IRF4 and IRF8. Taken together, these results indicate that NR4A3 is involved in TLR-mediated activation and gene expression of DCs.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Dendríticas/inmunología , Activación de Linfocitos , Proteínas del Tejido Nervioso/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Hormona Tiroidea/metabolismo , Linfocitos T/inmunología , Animales , Presentación de Antígeno , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Proteínas de Unión al ADN/genética , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , ARN Interferente Pequeño/genética , Receptores de Esteroides/genética , Receptores de Hormona Tiroidea/genética , Transducción de Señal , Receptores Toll-Like/inmunología
15.
Biosci Biotechnol Biochem ; 83(6): 1111-1116, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30898076

RESUMEN

The immunosuppressive activity of myriocin (ISP-1), a lead compound of fingolimod (FTY720), is derived from its 2-amino-1,3-propandiol structure. A non-proteinogenic amino acid, (2S,6R)-diamino-(5R,7)-dihydroxy-heptanoic acid (DADH), that contains this structure, was recently identified as a biosynthetic intermediate of a dipeptide secondary metabolite, vazabitide A, in Streptmyces sp. SANK 60404; however its effect on adaptive immunity has not yet been examined. In this study, we examined whether DADH suppresses mixed lymphocyte reaction using mouse bone marrow-derived dendritic cells (BMDCs) and allogeneic splenic T cells. Although T cell proliferation induced by cross-linking CD3 and CD28 were not suppressed by DADH unlike ISP-1, the pre-incubation of BMDCs with DADH but not ISP-1 significantly decreased allogeneic CD8+ T cell expansion. Based on these results, we concluded that DADH suppresses DC-mediated T cell activation by targeting DCs.


Asunto(s)
Aminoácidos/farmacología , Proliferación Celular/efectos de los fármacos , Ácidos Heptanoicos/farmacología , Inmunosupresores/farmacología , Activación de Linfocitos/efectos de los fármacos , Streptomyces/química , Linfocitos T/efectos de los fármacos , Animales , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T/citología
16.
Int Immunol ; 29(2): 87-94, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338898

RESUMEN

PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family, which plays an important role in the development of dendritic cells (DCs). CD11c (encoded by Itgax) is well established as a characteristic marker of hematopoietic lineages including DCs. In the present study, we analyzed the role of PU.1 (encoded by Spi-1) in the expression of CD11c. When small interfering RNA (siRNA) for Spi-1 was introduced into bone marrow-derived DCs (BMDCs), the mRNA level and cell surface expression of CD11c were dramatically reduced. Using reporter assays, the TTCC sequence at -56/-53 was identified to be critical for PU.1-mediated activation of the promoter. An EMSA showed that PU.1 directly bound to this region. ChIP assays demonstrated that a significant amount of PU.1 bound to this region on chromosomal DNA in BMDCs, which was decreased in LPS-stimulated BMDCs in accordance with the reduced levels of mRNAs of Itgax and Spi-1, and the histone acetylation degree. Enforced expression of exogenous PU.1 induced the expression of the CD11c protein on the cell surface of mast cells, whereas control transfectants rarely expressed CD11c. Quantitative RT-PCR also showed that the expression of a transcription factor Irf4, which is a partner molecule of PU.1, was reduced in PU.1-knocked down BMDCs. IRF4 transactivated the Itgax gene in a synergistic manner with PU.1. Taken together, these results indicate that PU.1 functions as a positive regulator of CD11c gene expression by directly binding to the Itgax promoter and through transactivation of the Irf4 gene.


Asunto(s)
Antígeno CD11c/metabolismo , Células Dendríticas/fisiología , Hematopoyesis , Factores Reguladores del Interferón/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Acetilación , Animales , Antígeno CD11c/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Hematopoyesis/genética , Histonas/metabolismo , Factores Reguladores del Interferón/genética , Ratones , Ratones Endogámicos BALB C , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , Transactivadores/genética , Activación Transcripcional
17.
J Immunol ; 192(8): 3936-46, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24639354

RESUMEN

The high-affinity IgE receptor, FcεRI, which is composed of α-, ß-, and γ-chains, plays an important role in IgE-mediated allergic responses. In the current study, involvement of the transcription factors, PU.1, GATA1, and GATA2, in the expression of FcεRI on human mast cells was investigated. Transfection of small interfering RNAs (siRNAs) against PU.1, GATA1, and GATA2 into the human mast cell line, LAD2, caused significant downregulation of cell surface expression of FcεRI. Quantification of the mRNA levels revealed that PU.1, GATA1, and GATA2 siRNAs suppressed the α transcript, whereas the amount of ß mRNA was reduced in only GATA2 siRNA transfectants. In contrast, γ mRNA levels were not affected by any of the knockdowns. Chromatin immunoprecipitation assay showed that significant amounts of PU.1, GATA1, and GATA2 bind to the promoter region of FCER1A (encoding FcεRIα) and that GATA2 binds to the promoter of MS4A2 (encoding FcεRIß). Luciferase assay and EMSA showed that GATA2 transactivates the MS4A2 promoter via direct binding. These knockdowns of transcription factors also suppressed the IgE-mediated degranulation activity of LAD2. Similarly, all three knockdowns suppressed FcεRI expression in primary mast cells, especially PU.1 siRNA and GATA2 siRNA, which target FcεRIα and FcεRIß, respectively. From these results, we conclude that PU.1 and GATA1 are involved in FcεRIα transcription through recruitment to its promoter, whereas GATA2 positively regulates FcεRIß transcription. Suppression of these transcription factors leads to downregulation of FcεRI expression and IgE-mediated degranulation activity. Our findings will contribute to the development of new therapeutic approaches for FcεRI-mediated allergic diseases.


Asunto(s)
Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA2/metabolismo , Regulación de la Expresión Génica , Mastocitos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores de IgE/genética , Transactivadores/metabolismo , Línea Celular , Membrana Celular/metabolismo , Inmunoprecipitación de Cromatina , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA2/genética , Técnicas de Silenciamiento del Gen , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/genética , Activación Transcripcional
18.
Allergol Int ; 64(3): 241-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26117255

RESUMEN

BACKGROUND: The transcription factors NFATc1 and PU.1 play important roles in osteoclast development. NFATc1 and PU.1 transactivate osteoclast-specific gene expression and a deficiency in NFATc1 or PU.1 genes causes osteopetrosis due to an insufficient development of osteoclasts. However, the existence of cross-regulation between NFATc1 and PU.1 is largely unknown. In the present study, the role of PU.1 in NFATc1 expression was investigated. METHODS: Osteoclasts were generated from mouse bone marrow cells. PU.1 knockdown was performed with siRNA introduction. The mRNA levels in siRNA-introduced cells were determined by quantitative RT-PCR. The involvement of PU.1 in the NFATc1 promoter was analyzed by using a chromatin immunoprecipitation (ChIP) assay and a reporter assay. Retrovirus vector was used for enforced expression of PU.1. RESULTS: Introduction of PU.1 siRNA into bone marrow-derived osteoclasts resulted in a decrease in NFATc1 mRNA level. A ChIP assay showed that PU.1 bound to the NFATc1 promoter in osteoclasts. NFATc1 promoter activity was reduced in PU.1 knockdown cells as assessed by a reporter assay. PU.1 siRNA introduction also downregulated the expression of osteoclast-specific genes and tartrate resistant acid phosphatase (TRAP) activity. Enforced expression of PU.1 using a retrovirus vector increased NFATc1 expression and TRAP activity. When NFATc1 expression was knocked down by using siRNA, the induction of osteoclast-specific genes and TRAP-positive cells was suppressed without affecting the expression level of PU.1. CONCLUSIONS: These results indicate that PU.1 is involved in osteoclast development by transactivating NFATc1 expression via direct binding to the NFATc1 promoter.


Asunto(s)
Factores de Transcripción NFATC/metabolismo , Osteoclastos/patología , Osteoporosis/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos , Factores de Transcripción NFATC/genética , Osteoporosis/genética , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , Transactivadores/genética , Activación Transcripcional , Transcriptoma
19.
Biosci Biotechnol Biochem ; 78(10): 1669-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25273132

RESUMEN

The intestine harbors a substantial number of commensal bacteria that provide considerable benefits to the host. Epidemiologic studies have identified associations between alterations in the composition of the intestinal microbiota and the development of allergic disease. However, the cellular and molecular mechanisms underlying these effects remain to be determined. Here, we show that heat-killed commensal bacteria suppressed degranulation of mast cells in vitro in a MyD88-independent manner. In particular, Enterococcus faecalis showed the strongest suppression of degranulation through partial inhibition of Ca(2+) signaling upon the high affinity IgE receptor (FcεRI) cross-linking.


Asunto(s)
Degranulación de la Célula , Enterococcus faecalis/fisiología , Mastocitos/citología , Factor 88 de Diferenciación Mieloide/metabolismo , Animales , Femenino , Espacio Intracelular/metabolismo , Ratones , Transducción de Señal
20.
J Biol Chem ; 287(39): 32689-96, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22865859

RESUMEN

The IL1RL1/ST2 gene encodes a receptor for IL-33. Signaling from IL1RL1/ST2 induced by IL-33 binding was recently identified as a modulator of the Th2 response. The target cells for IL-33 are restricted in some hematopoietic lineages, including mast cells, basophils, eosinophils, Th2 cells, natural killer cells, and dendritic cells. To clarify the molecular mechanisms of cell type-specific IL1RL1/ST2 expression in mast cells and basophils, transcriptional regulation of the human IL1RL1/ST2 promoter was investigated using the mast cell line LAD2 and the basophilic cell line KU812. Reporter assays suggested that two GATA motifs just upstream of the transcription start site in the ST2 promoter are critical for transcriptional activity. These two GATA motifs possess the capacity to bind GATA1 and GATA2 in EMSA. ChIP assay showed that GATA2, but not GATA1, bound to the ST2 promoter in LAD2 cells and that histone H3 at the ST2 promoter was acetylated in LAD2 cells, whereas binding of GATA1 and GATA2 to the ST2 promoter was detected in KU812 cells. Knockdown of GATA2 mRNA by siRNA reduced ST2 mRNA levels in KU812 and LAD2 cells and ST2 protein levels in LAD2 cells; in contrast, GATA1 siRNA transfection up-regulated ST2 mRNA levels in KU812 cells. The ST2 promoter was transactivated by GATA2 and repressed by GATA1 in coexpression analysis. When these siRNAs were introduced into human peripheral blood basophils, GATA2 siRNA reduced ST2 mRNA, whereas GATA1 siRNA up-regulated ST2 mRNA. These results indicate that GATA2 and GATA1 positively and negatively control human ST2 gene transcription, respectively.


Asunto(s)
Basófilos/metabolismo , Factor de Transcripción GATA2/metabolismo , Regulación de la Expresión Génica/fisiología , Mastocitos/metabolismo , Receptores de Superficie Celular/biosíntesis , Elementos de Respuesta/fisiología , Transactivadores/metabolismo , Basófilos/citología , Línea Celular Tumoral , Femenino , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA2/genética , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Masculino , Mastocitos/citología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular/genética , Transactivadores/genética , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA