Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Biol Rep ; 46(5): 5465-5478, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31368021

RESUMEN

Diabetes mellitus is worldwide disease. The life of diabetic patients are dependent on exogenous insulin. Pancreas or particularly islet transplantations are performed for reducing external insulin dependency. External substances are also used to protect the ß-cells from the death or increase insulin secretion. In the current study, two different boron containing compounds (sodium pentaborate pentahydrate-NaB and boric acid-BA) were investigated for their effect on pancreatic cells in terms of pro-apoptotic and anti-apoptotic markers, genes related to insulin production mechanism, pancreatic development and glucose metabolism, some antioxidant enzymes, and genes for the initiation of diabetes, insulin secretion and antioxidant enzyme activities in vitro. The results revealed that boron containing compounds did not lead to apoptosis. On the contrary, they increased cell viability, antioxidant enzyme activities and the level of genes related to insulin production. Overall evaluation, data in the current study showed that boron containing compounds might be promising therapeutic agents for type 1 diabetes. However, additional investigations are strictly needed to elucidate molecular mechanisms of boron containing compounds.


Asunto(s)
Boratos/farmacología , Ácidos Bóricos/farmacocinética , Células Secretoras de Insulina/efectos de los fármacos , Anexina A5 , Apoptosis/efectos de los fármacos , Boratos/metabolismo , Ácidos Bóricos/metabolismo , Boro/metabolismo , Boro/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus/metabolismo , Glutatión Peroxidasa , Humanos , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Superóxido Dismutasa
2.
Exp Cell Res ; 352(2): 393-402, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28232116

RESUMEN

Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neoplasias Neuroepiteliales/patología , Células Madre Neoplásicas/citología , Línea Celular Tumoral , Separación Celular/métodos , Humanos , Masculino , Células Madre Neoplásicas/fisiología , Esferoides Celulares/citología , Esferoides Celulares/fisiología , Células Tumorales Cultivadas , Adulto Joven
3.
Arch Oral Biol ; 129: 105183, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34091207

RESUMEN

OBJECTIVE: To determine the antibacterial effects of different saliva-substitutes-containing-lysozyme(LYZ) or-lactoferrin(LF) on Streptococcus mutans(S. mutans) in comparison with human saliva. DESIGN: In vitro wound-healing assay was performed with L929 mouse fibroblast cell line by using various concentrations of LYZ and LF to determine optimum concentrations and to confirm do not show any cytotoxicity of proteins according to cell culture studies. Antibacterial effect was assessed by determining Minimum Inhibitory Concentrations for all groups on S.mutans. Bacterial adhesion of S. mutans for 4 h on hydroxyapatite(HAP) discs after application of different saliva substitutes was evaluated. The formulations were:saliva-substitute(Group SS);saliva-substitute-containing-Lactoferrin(Group SSLF);saliva-substitute-containing-Lysozyme(Group SSLYZ). Human saliva was control group(Group HS). RESULTS: In vitro wound healing assay results showed that, when added into the cell culture media, LYZ and LF significantly increase 48 -h scratch wound closure compared to the cell culture media(p < 0.0001). At the end of second day, samples treated with both between 2.5-100 µg/mL LF and 5-200 µg/mL LYZ were found to have significant wound healing effect(p < 001). It was observed that saliva-substitutes-containing-LYZ or-LF had antibacterial effects on S.mutans. Bacterial adhesion on HAP discs was observed significantly higher in control group than in study groups. The amount of adhered S. mutans was significantly higher in Group SS than other study groups(p < 0.0001). However, no statistically significant difference was found between the number of bacteria adhered to HAP discs between SSLYZ and SSLF groups(p > 0.05). CONCLUSIONS: The study of cell viability and wound healing was great significance in the optimum concentrations of LYZ and LF. Among formulations, saliva-substitutes-containing-LYZ or-LF exhibited higher inhibitory effect on S.mutans.


Asunto(s)
Muramidasa , Streptococcus mutans , Animales , Antibacterianos/farmacología , Humanos , Lactoferrina/metabolismo , Lactoferrina/farmacología , Ratones , Saliva/metabolismo , Streptococcus mutans/metabolismo
4.
Elife ; 102021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34232859

RESUMEN

Hantaviruses are RNA viruses with known epidemic threat and potential for emergence. Several rodent-borne hantaviruses cause zoonoses accompanied by severe illness and death. However, assessments of zoonotic risk and the development of countermeasures are challenged by our limited knowledge of the molecular mechanisms of hantavirus infection, including the identities of cell entry receptors and their roles in influencing viral host range and virulence. Despite the long-standing presumption that ß3/ß1-containing integrins are the major hantavirus entry receptors, rigorous genetic loss-of-function evidence supporting their requirement, and that of decay-accelerating factor (DAF), is lacking. Here, we used CRISPR/Cas9 engineering to knockout candidate hantavirus receptors, singly and in combination, in a human endothelial cell line that recapitulates the properties of primary microvascular endothelial cells, the major targets of viral infection in humans. The loss of ß3 integrin, ß1 integrin, and/or DAF had little or no effect on entry by a large panel of hantaviruses. By contrast, loss of protocadherin-1, a recently identified entry receptor for some hantaviruses, substantially reduced hantavirus entry and infection. We conclude that major host molecules necessary for endothelial cell entry by PCDH1-independent hantaviruses remain to be discovered.


Asunto(s)
Células Endoteliales/virología , Orthohantavirus/fisiología , Receptores de Superficie Celular/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Humanos
5.
Onco Targets Ther ; 13: 5763-5777, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606788

RESUMEN

PURPOSE: The main purpose of this study is to demonstrate the effects of epithelial to mesenchymal transition activating transcription factor silencing (EMT-ATF silencing) on migration, invasion, drug resistance and tumor-forming abilities of various pancreatic cancer cell lines. Additionally, the contribution of small molecule inhibitors of EMT (SD-208 and CX4945) to the effects of gene silencing was evaluated. METHODS: EMT activating transcription factors "Snail, Slug and Twist" were silenced by short hairpins on Panc-1, MIA PaCa-2, BxPC-3, and AsPC-1 pancreatic cancer cell lines. The changes in migration, invasion, laminin attachment, cancer stem-like cell properties and tumor-forming abilities were investigated. Chemosensitivity assays and small molecule inhibitors of EMT were applied to the metastatic pancreatic cancer cell line AsPC-1. RESULTS: EMT-ATF silencing reduced EMT and stem cell-like characteristics of pancreatic cancer cell lines. Following EMT-ATF silencing amongst the four PC cell lines, AsPC-1 showed the best response and was chosen for further chemoresistance and combinational therapy applications. EMT downregulated AsPC-1 cells showed less resistance to select chemotherapeutics compared to the control group. Both small molecule inhibitors enhanced the outcomes of EMT-ATF silencing. CONCLUSION: Overall it was found that EMT-ATF silencing, either by EMT-ATF silencing or with the enhancement by small molecules, is a good candidate to treat pancreatic cancer since it simultaneously minimizes metastasis, stem cell properties, and drug resistance.

6.
Turk J Biol ; 44(5): 230-237, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110361

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) pathology is known for its uncontrollable progress due to highly invasive characteristics and refractory behavior against existing chemotherapies. The aberrant expression of CDH1 (expresses the protein E-cadherin) is associated with increased overall survival in various cancers, however, E-cadherin expression in PDAC progression has remained elusive. We investigated the impact of exogenously elevated E-cadherin levels on the tumorigenicity of transduced low grade and metastatic PDAC cell lines, Panc-1 and AsPC-1, respectively. Constitutive expression of E-cadherin promoted a more hybrid E/M state in AsPC-1 cells, while it was associated with the acquisition of a more epithelial-like state in Panc1 cells. Our study suggests that E-cadherin may play differential roles in determining the metastatic characteristics of primary and metastatic pancreatic cancer cells.

7.
Anticancer Agents Med Chem ; 20(16): 1956-1965, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32384037

RESUMEN

BACKGROUND: Highly aggressive and resistant to chemotherapy, pancreatic cancers are the fourth leading cause of cancer-related deaths in the western world. The absence of effective chemotherapeutics is leading researchers to develop novel drugs or repurpose existing chemicals. Alexidine Dihydrochloride (AD), an orally bioavailable bis-biguanide compound, is an apoptosis stimulating reagent. It induces mitochondrial damage by inhibiting a mitochondrial-specific protein tyrosine phosphatase, PTPMT1. The aim of this study was to test AD as a novel compound to induce apoptosis in a human pancreatic adenocarcinoma cell lines, Panc-1, MIA PaCa-2, AsPC-1, and Psn-1. METHODS: After the IC50 value of the AD was determined by cytotoxicity assay, apoptosis was observed by a variety of methods, including the detection of early apoptosis marker Annexin V and the proteomic profile screening by apoptosis array. Multicaspase and mitochondrial depolarization were measured, and changes in the cell cycle were analyzed. RESULTS: AD is found to initiate apoptosis by activating the intrinsic pathway and inhibit the cell cycle in pancreatic cancer cell lines. CONCLUSION: In conclusion, considering its anti-cancer properties and bioavailability, Alexidine dihydrochloride can be considered as a potential candidate against pancreatic adenocarcinomas.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biguanidas/farmacología , Reposicionamiento de Medicamentos , Neoplasias Pancreáticas/tratamiento farmacológico , Antineoplásicos/química , Biguanidas/química , Ciclo Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Neoplasias Pancreáticas/patología , Relación Estructura-Actividad
8.
Turk J Biol ; 42(4): 279-285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30814891

RESUMEN

Chordoma is a slowly growing and invasive bone tumor  with a tendency to metastasize locally in advanced stages.  It is essential to discover new therapeutics that target genes involved in the metastasis of chordoma. Epithelial-mesenchymal transition (EMT) might robustly influence the metastasis of a tumor bulk. To our knowledge, this is the first time to show that EMT might have a role in chordoma metastasis. In this study, we aim to investigate the possible role of Twist, a key player transcription factor of EMT, in chordoma metastasis. The TWIST gene was silenced by short hairpins in chordoma cell line MUG-Chor1 and effects on metastasis were investigated by wound healing/gap closure and invasion assays. Twist-silenced MUG-Chor1 cells were found to be less migratory and less invasive when compared to the negative control. This study indicates that Twist might have a role in metastatic chordoma cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA