Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 28(24): 2726-38, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25512560

RESUMEN

The WD40 domain-containing protein WRAP53ß (WD40 encoding RNA antisense to p53; also referred to as WDR79/TCAB1) controls trafficking of splicing factors and the telomerase enzyme to Cajal bodies, and its functional loss has been linked to carcinogenesis, premature aging, and neurodegeneration. Here, we identify WRAP53ß as an essential regulator of DNA double-strand break (DSB) repair. WRAP53ß rapidly localizes to DSBs in an ATM-, H2AX-, and MDC1-dependent manner. We show that WRAP53ß targets the E3 ligase RNF8 to DNA lesions by facilitating the interaction between RNF8 and its upstream partner, MDC1, in response to DNA damage. Simultaneous binding of MDC1 and RNF8 to the highly conserved WD40 scaffold domain of WRAP53ß facilitates their interaction and accumulation of RNF8 at DSBs. In this manner, WRAP53ß controls proper ubiquitylation at DNA damage sites and the downstream assembly of 53BP1, BRCA1, and RAD51. Furthermore, we reveal that knockdown of WRAP53ß impairs DSB repair by both homologous recombination (HR) and nonhomologous end-joining (NHEJ), causes accumulation of spontaneous DNA breaks, and delays recovery from radiation-induced cell cycle arrest. Our findings establish WRAP53ß as a novel regulator of DSB repair by providing a scaffold for DNA repair factors.


Asunto(s)
Reparación del ADN/fisiología , Telomerasa/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Telomerasa/genética , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas
2.
J Pediatr Hematol Oncol ; 43(1): e138-e140, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31743320

RESUMEN

Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder characterized by progressive cerebellar degeneration that is typically diagnosed in early childhood. A-T is associated with a predisposition to malignancies, particularly lymphoid tumors in childhood and early adulthood. An adolescent girl with minimal neurologic symptoms was diagnosed with A-T 8 years after completing therapy for T-cell acute lymphoblastic leukemia, following a diagnosis of ATM-mutated breast cancer in her mother. We highlight the importance of recognizing ATM mutations in T-cell acute lymphoblastic leukemia, appreciating the phenotypic heterogeneity of A-T, and defining optimal cancer screening in A-T patients.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Ataxia Telangiectasia/diagnóstico , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/complicaciones , Adolescente , Adulto , Ataxia Telangiectasia/etiología , Terapia Combinada , Femenino , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Pronóstico , Estudios Retrospectivos
3.
Immunity ; 32(3): 379-91, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20303296

RESUMEN

Decreased expression of the Nlrp3 protein is associated with susceptibility to Crohn's disease. However, the role of Nlrp3 in colitis has not been characterized. Nlrp3 interacts with the adaptor protein ASC to activate caspase-1 in inflammasomes, which are protein complexes responsible for the maturation and secretion of interleukin-1beta (IL-1beta) and IL-18. Here, we showed that mice deficient for Nlrp3 or ASC and caspase-1 were highly susceptible to dextran sodium sulfate (DSS)-induced colitis. Defective inflammasome activation led to loss of epithelial integrity, resulting in systemic dispersion of commensal bacteria, massive leukocyte infiltration, and increased chemokine production in the colon. This process was a consequence of a decrease in IL-18 in mice lacking components of the Nlrp3 inflammasome, resulting in higher mortality rates. Thus, the Nlrp3 inflammasome is critically involved in the maintenance of intestinal homeostasis and protection against colitis.


Asunto(s)
Proteínas Portadoras/inmunología , Colitis/inmunología , Colitis/patología , Células Epiteliales/inmunología , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proliferación Celular , Colitis/inducido químicamente , Colitis/microbiología , Proteínas del Citoesqueleto/inmunología , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/citología , Interleucina-18/biosíntesis , Interleucina-18/inmunología , Absorción Intestinal , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal
4.
EMBO J ; 33(8): 862-77, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24534091

RESUMEN

The MRE11-RAD50-NBS1 (MRN) complex is essential for the detection of DNA double-strand breaks (DSBs) and initiation of DNA damage signaling. Here, we show that Rad17, a replication checkpoint protein, is required for the early recruitment of the MRN complex to the DSB site that is independent of MDC1 and contributes to ATM activation. Mechanistically, Rad17 is phosphorylated by ATM at a novel Thr622 site resulting in a direct interaction of Rad17 with NBS1, facilitating recruitment of the MRN complex and ATM to the DSB, thereby enhancing ATM signaling. Repetition of these events creates a positive feedback for Rad17-dependent activation of MRN/ATM signaling which appears to be a requisite for the activation of MDC1-dependent MRN complex recruitment. A point mutation of the Thr622 residue of Rad17 leads to a significant reduction in MRN/ATM signaling and homologous recombination repair, suggesting that Thr622 phosphorylation is important for regulation of the MRN/ATM signaling by Rad17. These findings suggest that Rad17 plays a critical role in the cellular response to DNA damage via regulation of the MRN/ATM pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Transducción de Señal , Ácido Anhídrido Hidrolasas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Humanos , Proteína Homóloga de MRE11 , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional
5.
Genes Dev ; 24(19): 2146-56, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20837656

RESUMEN

Optimal induction of p53 protein after DNA damage requires RPL26-mediated increases in p53 mRNA translation. We report here the existence of a dsRNA region containing complementary sequences of the 5'- and 3'-untranslated regions (UTRs) of human p53 mRNA that is critical for its translational regulation by RPL26. Mutating as few as 3 bases in either of the two complementary UTR sequences abrogates the ability of RPL26 to bind to p53 mRNA and stimulate p53 translation, while compensatory mutations restore this binding and regulation. Short, single-strand oligonucleotides that target this 5'-3'-UTR base-pairing region blunt the binding of RPL26 to p53 mRNA in cells and reduce p53 induction and p53-mediated cell death after several different types of DNA damage and cellular stress. The ability to reduce stress induction of p53 with oligonucleotides or other small molecules has numerous potential therapeutic uses.


Asunto(s)
Regiones no Traducidas 3' , Regiones no Traducidas 5' , Daño del ADN/fisiología , Regulación de la Expresión Génica , ARN Mensajero/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Humanos , Oligonucleótidos/farmacología , Unión Proteica , ARN Bicatenario/metabolismo , Proteínas Ribosómicas/metabolismo , Estrés Fisiológico/efectos de los fármacos
6.
Annu Rev Med ; 66: 129-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25423595

RESUMEN

Cellular responses to DNA damage are important determinants of both cancer development and cancer outcome following radiation therapy and chemotherapy. Identification of molecular pathways governing DNA damage signaling and DNA repair in response to different types of DNA lesions allows for a better understanding of the effects of radiation and chemotherapy on normal and tumor cells. Although dysregulation of the DNA damage response (DDR) is associated with predisposition to cancer development, it can also result in hypersensitivity or resistance of tumors to therapy and can be exploited for improvement of cancer treatment. We highlight the DDR pathways that are activated after treatment with radiation and different classes of chemotherapeutic drugs and describe mechanisms determining tumor sensitivity and resistance to these agents. Further, we discuss approaches to enhance tumor sensitivity to radiation and chemotherapy by modulating the DDR with a goal of enhancing the effectiveness of cancer therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Daño del ADN/genética , Reparación del ADN/genética , Neoplasias/genética , Radioterapia , Antineoplásicos/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Humanos , Neoplasias/terapia
7.
Mol Cell ; 32(2): 180-9, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18951086

RESUMEN

Mdm2 regulates the p53 tumor suppressor by promoting its proteasome-mediated degradation. Mdm2 and p53 engage in an autoregulatory feedback loop that maintains low p53 activity in nonstressed cells. We now report that Mdm2 regulates p53 levels also by targeting ribosomal protein L26. L26 binds p53 mRNA and augments its translation. Mdm2 binds L26 and drives its polyubiquitylation and proteasomal degradation. In addition, the binding of Mdm2 to L26 attenuates the association of L26 with p53 mRNA and represses L26-mediated augmentation of p53 protein synthesis. Under nonstressed conditions, both mechanisms help maintain low cellular p53 levels by constitutively tuning down p53 translation. In response to genotoxic stress, the inhibitory effect of Mdm2 on L26 is attenuated, enabling a rapid increase in p53 synthesis. The Mdm2-L26 interaction thus represents an additional important component of the autoregulatory feedback loop that dictates cellular p53 levels and activity.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/fisiología , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular , Retroalimentación Fisiológica , Humanos , Ratones , Modelos Genéticos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
8.
Proc Natl Acad Sci U S A ; 110(42): 16874-9, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082117

RESUMEN

Recruitment of DNA repair factors and modulation of chromatin structure at sites of DNA double-strand breaks (DSBs) is a complex and highly orchestrated process. We developed a system that can induce DSBs rapidly at defined endogenous sites in mammalian genomes and enables direct assessment of repair and monitoring of protein recruitment, egress, and modification at DSBs. The tight regulation of the system also permits assessments of relative kinetics and dependencies of events associated with cellular responses to DNA breakage. Distinct advantages of this system over focus formation/disappearance assays for assessing DSB repair are demonstrated. Using ChIP, we found that nucleosomes are partially disassembled around DSBs during nonhomologous end-joining repair in G1-arrested mammalian cells, characterized by a transient loss of the H2A/H2B histone dimer. Nucleolin, a protein with histone chaperone activity, interacts with RAD50 via its arginine-glycine rich domain and is recruited to DSBs rapidly in an MRE11-NBS1-RAD50 complex-dependent manner. Down-regulation of nucleolin abrogates the nucleosome disruption, the recruitment of repair factors, and the repair of the DSB, demonstrating the functional importance of nucleosome disruption in DSB repair and identifying a chromatin-remodeling protein required for the process. Interestingly, the nucleosome disruption that occurs during DSB repair in cycling cells differs in that both H2A/H2B and H3/H4 histone dimers are removed. This complete nucleosome disruption is also dependent on nucleolin and is required for recruitment of replication protein A to DSBs, a marker of DSB processing that is a requisite for homologous recombination repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Puntos de Control de la Fase G1 del Ciclo Celular , Nucleosomas/metabolismo , Fosfoproteínas/metabolismo , Multimerización de Proteína , Proteínas de Unión al ARN/metabolismo , Reparación del ADN por Recombinación , Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteína Homóloga de MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/genética , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Nucleolina
9.
J Virol ; 88(20): 11965-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100830

RESUMEN

High-risk human papillomaviruses (HPVs), including HPV-16 and HPV-18, are the causative agents of cervical carcinomas and are linked to several other tumors of the anogenital and oropharyngeal regions. The majority of HPV-induced tumors contain integrated copies of the normally episomal HPV genome that invariably retain intact forms of the two HPV oncogenes E6 and E7. E6 induces degradation of the cellular tumor suppressor p53, while E7 destabilizes the retinoblastoma (Rb) protein. Previous work has shown that loss of E6 function in cervical cancer cells induces p53 expression as well as downstream effectors that induce apoptosis and cell cycle arrest. Similarly, loss of E7 allows increased Rb expression, leading to cell cycle arrest and senescence. Here, we demonstrate that expression of a bacterial Cas9 RNA-guided endonuclease, together with single guide RNAs (sgRNAs) specific for E6 or E7, is able to induce cleavage of the HPV genome, resulting in the introduction of inactivating deletion and insertion mutations into the E6 or E7 gene. This results in the induction of p53 or Rb, leading to cell cycle arrest and eventual cell death. Both HPV-16- and HPV-18-transformed cells were found to be responsive to targeted HPV genome-specific DNA cleavage. These data provide a proof of principle for the idea that vector-delivered Cas9/sgRNA combinations could represent effective treatment modalities for HPV-induced cancers. Importance: Human papillomaviruses (HPVs) are the causative agents of almost all cervical carcinomas and many other tumors, including many head and neck cancers. In these cancer cells, the HPV DNA genome is integrated into the cellular genome, where it expresses high levels of two viral oncogenes, called E6 and E7, that are required for cancer cell growth and viability. Here, we demonstrate that the recently described bacterial CRISPR/Cas RNA-guided endonuclease can be reprogrammed to target and destroy the E6 or E7 gene in cervical carcinoma cells transformed by HPV, resulting in cell cycle arrest, leading to cancer cell death. We propose that viral vectors designed to deliver E6- and/or E7-specific CRISPR/Cas to tumor cells could represent a novel and highly effective tool to treat and eliminate HPV-induced cancers.


Asunto(s)
Alphapapillomavirus/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Unión al ADN/genética , Endonucleasas/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus/genética , Proteínas Represoras/genética , Neoplasias del Cuello Uterino/genética , Alphapapillomavirus/aislamiento & purificación , Secuencia de Bases , Línea Celular Tumoral , ADN Viral/genética , Femenino , Humanos , Datos de Secuencia Molecular , Neoplasias del Cuello Uterino/virología
10.
Blood ; 119(6): 1490-500, 2012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-22144182

RESUMEN

Ataxia-telangiectasia mutated (ATM) plays a central role in DNA damage responses, and its loss leads to development of T-cell malignancies. Here, we show that ATM loss also leads to intrinsic mitochondrial abnormalities in thymocytes, including elevated reactive oxygen species, increased aberrant mitochondria, high cellular respiratory capacity, and decreased mitophagy. A fraction of ATM protein is localized in mitochondria, and it is rapidly activated by mitochondrial dysfunction. Unexpectedly, allelic loss of the autophagy regulator Beclin-1 significantly delayed tumor development in ATM-null mice. This effect was not associated with rescue of DNA damage signaling but rather with a significant reversal of the mitochondrial abnormalities. These data support a model in which ATM plays direct roles in modulating mitochondrial homeostasis and suggest that mitochondrial dysfunction and associated increases in mitochondrial reactive oxygen species contribute to the cancer-prone phenotype observed in organisms lacking ATM. Thus, ataxia-telangiectasia should be considered, at least in part, as a mitochondrial disease.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/fisiopatología , Proteínas de la Ataxia Telangiectasia Mutada , Autofagia , Beclina-1 , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Humanos , Immunoblotting , Estimación de Kaplan-Meier , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mitocondrias/genética , Mitocondrias/fisiología , Consumo de Oxígeno , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Timocitos/metabolismo , Timocitos/ultraestructura , Proteínas Supresoras de Tumor/genética
11.
Nat Cell Biol ; 9(6): 683-90, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17486112

RESUMEN

We developed a novel system to create DNA double-strand breaks (DSBs) at defined endogenous sites in the human genome, and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation (ChIP). The detection of human ATM protein at site-specific DSBs required functional NBS1 protein, ATM kinase activity and ATM autophosphorylation on Ser 1981. DSB formation led to the localized disruption of nucleosomes, a process that depended on both functional NBS1 and ATM. These two proteins were also required for efficient recruitment of the repair cofactor XRCC4 to DSBs, and for efficient DSB repair. These results demonstrate the functional importance of ATM kinase activity and phosphorylation in the response to DSBs, and support a model in which ordered chromatin structure changes that occur after DNA breakage depend on functional NBS1 and ATM, and facilitate DNA DSB repair.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/fisiología , ADN/genética , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Nucleares/genética , Nucleosomas/genética , Nucleosomas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética
12.
Mol Cancer Ther ; 23(6): 751-765, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38588408

RESUMEN

A majority of patients with cancer receive radiotherapy as part of their treatment regimens whether using external beam therapy or locally-delivered radioisotopes. While often effective, some tumors are inadequately controlled with radiation and radiotherapy has significant short-term and long-term toxicities for cancer survivors. Insights into molecular mechanisms involved in cellular responses to DNA breaks introduced by radiation or other cancer therapies have been gained in recent years and approaches to manipulate these responses to enhance tumor cell killing or reduce normal tissue toxicity are of great interest. Here, we report the identification and initial characterization of XRD-0394, a potent and specific dual inhibitor of two DNA damage response kinases, ATM and DNA-PKcs. This orally bioavailable molecule demonstrates significantly enhanced tumor cell kill in the setting of therapeutic ionizing irradiation in vitro and in vivo. XRD-0394 also potentiates the effectiveness of topoisomerase I inhibitors in vitro. In addition, in cells lacking BRCA1/2 XRD-0394 shows single-agent activity and synergy in combination with PARP inhibitors. A phase Ia clinical trial (NCT05002140) with XRD-0394 in combination with radiotherapy has completed. These results provide a rationale for future clinical trials with XRD-0394 in combination with radiotherapy, PARP inhibitors, and targeted delivery of topoisomerase I inhibitors.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Proteína Quinasa Activada por ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Fármacos Sensibilizantes a Radiaciones , Inhibidores de Topoisomerasa I , Humanos , Animales , Inhibidores de Topoisomerasa I/farmacología , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Femenino , Sinergismo Farmacológico
13.
J Biol Chem ; 287(20): 16467-76, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22433872

RESUMEN

Ribosomal protein RPL26 enhances p53 translation after DNA damage, and this regulation depends upon interactions between the 5'- and 3'-UTRs of human p53 mRNA (Takagi, M., Absalon, M. J., McLure, K. G., and Kastan, M. B. (2005) Cell 123, 49-63; Chen, J., and Kastan, M. B. (2010) Genes Dev. 24, 2146-2156). In contrast, nucleolin (NCL) suppresses the translation of p53 mRNA and its induction after DNA damage. We confirmed reports that RPL26 and NCL interact with each other and then explored the potential role of this interaction in the translational control of p53 after stress. NCL repression of p53 translation utilizes both the 5'- and 3'-UTRs of p53 mRNA, and NCL binds to the same 5'-3'-UTR interaction region that is critical for the recruitment of RPL26 to p53 mRNA after DNA damage. We also found that NCL is able to oligomerize, consistent with a model in which NCL stabilizes this double-stranded RNA structure. We found that the RNA-binding domain of NCL participates in binding to p53 mRNA, is required for both NCL dimerization and NCL-mediated translational repression, and is the domain of NCL that interacts with RPL26. Excessive RPL26 disrupts NCL dimerization, and point mutations in the NCL-interacting region of RPL26 reduce NCL-RPL26 interactions and attenuate both RPL26 binding to human p53 mRNA and p53 induction by RPL26. These observations suggest a model in which the base pairings in the p53 UTR interaction regions are critical for both translational repression and stress induction of p53 by NCL and RPL26, respectively, and that disruption of a NCL-NCL homodimer by RPL26 may be the switch between translational repression and activation after stress.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Daño del ADN/fisiología , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína p53 Supresora de Tumor/biosíntesis , Línea Celular Tumoral , Humanos , Modelos Biológicos , Fosfoproteínas/genética , Mutación Puntual , Multimerización de Proteína/fisiología , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Estrés Fisiológico/fisiología , Proteína p53 Supresora de Tumor/genética , Nucleolina
14.
Proc Natl Acad Sci U S A ; 107(9): 4153-8, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20160076

RESUMEN

Ataxia-telangiectasia mutated (ATM) is a cellular damage sensor that coordinates the cell cycle with damage-response checkpoints and DNA repair to preserve genomic integrity. However, ATM also has been implicated in metabolic regulation, and ATM deficiency is associated with elevated reactive oxygen species (ROS). ROS has a central role in many physiological and pathophysiological processes including inflammation and chronic diseases such as atherosclerosis and cancer, underscoring the importance of cellular pathways involved in redox homeostasis. We have identified a cytoplasmic function for ATM that participates in the cellular damage response to ROS. We show that in response to elevated ROS, ATM activates the TSC2 tumor suppressor via the LKB1/AMPK metabolic pathway in the cytoplasm to repress mTORC1 and induce autophagy. Importantly, elevated ROS and dysregulation of mTORC1 in ATM-deficient cells is inhibited by rapamycin, which also rescues lymphomagenesis in Atm-deficient mice. Our results identify a cytoplasmic pathway for ROS-induced ATM activation of TSC2 to regulate mTORC1 signaling and autophagy, identifying an integration node for the cellular damage response with key pathways involved in metabolism, protein synthesis, and cell survival.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenilato Quinasa/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Complejos Multiproteicos , Estrés Oxidativo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
15.
Mol Cancer Res ; 21(3): 261-273, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36469004

RESUMEN

IMPLICATIONS: Multiple members of the cohesin complex are involved in the regulation of DNA replication and transcription in the vicinity of DNA double-strand breaks and their role(s) are regulated by the ATM kinase.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Fosforilación , Cohesinas
16.
Radiat Res ; 199(4): 406-421, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36921295

RESUMEN

Altered cellular responses to DNA damage can contribute to cancer development, progression, and therapeutic resistance. Mutations in key DNA damage response factors occur across many cancer types, and the DNA damage-responsive gene, TP53, is frequently mutated in a high percentage of cancers. We recently reported that an alternative splicing pathway induced by DNA damage regulates alternative splicing of TP53 RNA and further modulates cellular stress responses. Through damage-induced inhibition of the SMG1 kinase, TP53 pre-mRNA is alternatively spliced to generate TP53b mRNA and p53b protein is required for optimal induction of cellular senescence after ionizing radiation-induced DNA damage. Herein, we confirmed and extended these observations by demonstrating that the ATM protein kinase is required for repression of SMG1 kinase activity after ionizing radiation. We found that the RNA helicase and splicing factor, DDX5, interacts with SMG1, is required for alternative splicing of TP53 pre-mRNA to TP53b and TP53c mRNAs after DNA damage, and contributes to radiation-induced cellular senescence. Interestingly, the role of SMG1 in alternative splicing of p53 appears to be distinguishable from its role in regulating nonsense-mediated RNA decay. Thus, ATM, SMG1, and DDX5 participate in a DNA damage-induced alternative splicing pathway that regulates TP53 splicing and modulates radiation-induced cellular senescence.


Asunto(s)
Empalme Alternativo , Neoplasias , Humanos , Proteínas Serina-Treonina Quinasas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Daño del ADN , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
17.
Cell Metab ; 4(5): 377-89, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17084711

RESUMEN

Metabolic syndrome is associated with insulin resistance and atherosclerosis. Here, we show that deficiency of one or two alleles of ATM, the protein mutated in the cancer-prone disease ataxia telangiectasia, worsens features of the metabolic syndrome, increases insulin resistance, and accelerates atherosclerosis in apoE-/- mice. Transplantation with ATM-/- as compared to ATM+/+ bone marrow increased vascular disease. Jun N-terminal kinase (JNK) activity was increased in ATM-deficient cells. Treatment of ATM+/+apoE-/- mice with low-dose chloroquine, an ATM activator, decreased atherosclerosis. In an ATM-dependent manner, chloroquine decreased macrophage JNK activity, decreased macrophage lipoprotein lipase activity (a proatherogenic consequence of JNK activation), decreased blood pressure, and improved glucose tolerance. Chloroquine also improved metabolic abnormalities in ob/ob and db/db mice. These results suggest that ATM-dependent stress pathways mediate susceptibility to the metabolic syndrome and that chloroquine or related agents promoting ATM activity could modulate insulin resistance and decrease vascular disease.


Asunto(s)
Cloroquina/uso terapéutico , Proteínas de Unión al ADN/deficiencia , Enfermedades Metabólicas/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/deficiencia , Transducción de Señal , Estrés Fisiológico/metabolismo , Proteínas Supresoras de Tumor/deficiencia , Animales , Apolipoproteínas E/genética , Proteínas de la Ataxia Telangiectasia Mutada , Aterosclerosis/tratamiento farmacológico , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Macrófagos/efectos de los fármacos , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Noqueados , Mutación , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética
18.
J Clin Invest ; 118(1): 79-88, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18097482

RESUMEN

Despite great interest in cancer chemoprevention, effective agents are few. Here we show that chloroquine, a drug that activates the stress-responsive Atm-p53 tumor-suppressor pathway, preferentially enhances the death of Myc oncogene-overexpressing primary mouse B cells and mouse embryonic fibroblasts (MEFs) and impairs Myc-induced lymphomagenesis in a transgenic mouse model of human Burkitt lymphoma. Chloroquine-induced cell death in primary MEFs and human colorectal cancer cells was dependent upon p53, but not upon the p53 modulators Atm or Arf. Accordingly, chloroquine impaired spontaneous lymphoma development in Atm-deficient mice, a mouse model of ataxia telangiectasia, but not in p53-deficient mice. Chloroquine treatment enhanced markers of both macroautophagy and apoptosis in MEFs but ultimately impaired lysosomal protein degradation. Interestingly, chloroquine-induced cell death was not dependent on caspase-mediated apoptosis, as neither overexpression of the antiapoptotic protein Bcl-2 nor deletion of the proapoptotic Bax and Bak affected chloroquine-induced MEF death. However, when both apoptotic and autophagic pathways were blocked simultaneously, chloroquine-induced killing of Myc-overexpressing cells was blunted. Thus chloroquine induces lysosomal stress and provokes a p53-dependent cell death that does not require caspase-mediated apoptosis. These findings specifically demonstrate that intermittent chloroquine use effectively prevents cancer in mouse models of 2 genetically distinct human cancer syndromes, Burkitt lymphoma and ataxia telangiectasia, suggesting that agents targeting lysosome-mediated degradation may be effective in cancer prevention.


Asunto(s)
Antirreumáticos/farmacología , Apoptosis/efectos de los fármacos , Ataxia Telangiectasia/prevención & control , Autofagia/efectos de los fármacos , Linfoma de Burkitt/prevención & control , Transformación Celular Neoplásica/metabolismo , Cloroquina/farmacología , Lisosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antirreumáticos/uso terapéutico , Apoptosis/genética , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patología , Proteínas de la Ataxia Telangiectasia Mutada , Autofagia/genética , Linfocitos B/metabolismo , Linfocitos B/patología , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Caspasas/genética , Caspasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Cultivadas , Cloroquina/uso terapéutico , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lisosomas/patología , Masculino , Ratones , Ratones Mutantes , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Experimentales/prevención & control , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
19.
Nat Cell Biol ; 4(12): 913-20, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12447395

RESUMEN

Fanconi anaemia (FA) and Nijmegen breakage syndrome (NBS) are autosomal recessive chromosome instability syndromes with distinct clinical phenotypes. Cells from individuals affected with FA are hypersensitive to mitomycin C (MMC), and cells from those with NBS are hypersensitive to ionizing radiation. Here we report that both NBS cell lines and individuals with NBS are hypersensitive to MMC, indicating that there may be functional linkage between FA and NBS. In wild-type cells, MMC activates the colocalization of the FA subtype D2 protein (FANCD2) and NBS1 protein in subnuclear foci. Ionizing radiation activates the ataxia telangiectasia kinase (ATM)-dependent and NBS1-dependent phosphorylation of FANCD2, resulting in an S-phase checkpoint. NBS1 and FANCD2 therefore cooperate in two distinct cellular functions, one involved in the DNA crosslink response and one involved in the S-phase checkpoint response.


Asunto(s)
Proteínas de Ciclo Celular/genética , Daño del ADN/genética , Proteínas Nucleares/genética , Antibióticos Antineoplásicos/farmacología , Línea Celular Transformada , Rotura Cromosómica , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN , Resistencia a Medicamentos/genética , Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Humanos , Mitomicina/farmacología , Fase S/genética , Rayos Ultravioleta
20.
J Cell Biol ; 173(2): 195-206, 2006 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-16618811

RESUMEN

We show that DNA double-strand breaks (DSBs) induce complex subcompartmentalization of genome surveillance regulators. Chromatin marked by gamma-H2AX is occupied by ataxia telangiectasia-mutated (ATM) kinase, Mdc1, and 53BP1. In contrast, repair factors (Rad51, Rad52, BRCA2, and FANCD2), ATM and Rad-3-related (ATR) cascade (ATR, ATR interacting protein, and replication protein A), and the DNA clamp (Rad17 and -9) accumulate in subchromatin microcompartments delineated by single-stranded DNA (ssDNA). BRCA1 and the Mre11-Rad50-Nbs1 complex interact with both of these compartments. Importantly, some core DSB regulators do not form cytologically discernible foci. These are further subclassified to proteins that connect DSBs with the rest of the nucleus (Chk1 and -2), that assemble at unprocessed DSBs (DNA-PK/Ku70), and that exist on chromatin as preassembled complexes but become locally modified after DNA damage (Smc1/Smc3). Finally, checkpoint effectors such as p53 and Cdc25A do not accumulate at DSBs at all. We propose that subclassification of DSB regulators according to their residence sites provides a useful framework for understanding their involvement in diverse processes of genome surveillance.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN , Reparación del ADN , ADN/metabolismo , Genoma , Animales , Proteína BRCA1/fisiología , Línea Celular , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cromatina/fisiología , Proteínas Cromosómicas no Histona/fisiología , ADN/efectos de la radiación , Humanos , Rayos Láser , Proteínas Nucleares/fisiología , Fosforilación , Proteínas Quinasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA