Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Lab Invest ; 103(3): 100026, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36925206

RESUMEN

Repeated implantation failure is a major cause of infertility among healthy women. Uterine ß-catenin (CTNNB1) plays a critical role in implantation. However, the role of embryonic CTNNB1 during implantation remains unclear. We addressed this topic by analyzing mice carrying Ctnnb1-deficient (Ctnnb1Δ/Δ) embryos. Ctnnb1Δ/Δ embryos were produced by intercrossing mice bearing Ctnnb1-deficient eggs and sperms. We found that Ctnnb1Δ/Δ embryos developed to the blastocyst stage; thereafter, they were resorbed, leaving empty decidual capsules. Moreover, leukemia inhibitory factor, a uterine factor essential for implantation, was undetectable in Ctnnb1Δ/Δ blastocysts. Furthermore, CDX2, a transcription factor that determines the fate of trophectoderm cells, was not observed in Ctnnb1Δ/Δ blastocysts. Intrauterine injection with uterine fluids (from control mice) and recombinant mouse leukemia inhibitory factor proteins rescued the uterine response to Ctnnb1Δ/Δ blastocysts. These results suggest that embryonic CTNNB1 is required for the secretion of blastocyst-derived factor(s) that open the implantation window, indicating that the uterine response to implantation can be induced using supplemental materials. Therefore, our results may contribute to the discovery of a similar mechanism in humans, leading to a better understanding of the pathogenesis of repeated implantation failure.


Asunto(s)
Implantación del Embrión , beta Catenina , Animales , Femenino , Humanos , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Blastocisto/metabolismo , Implantación del Embrión/fisiología , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Útero/metabolismo
2.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38203456

RESUMEN

In some non-mammalian eggs, the fusion of one egg and multiple sperm (polyspermy) induces a robust rise in intracellular calcium ion (Ca2+) concentration due to a shortage of inducers carried by a single sperm. Instead, one of the sperm nuclei is selected inside the egg for normal embryogenesis. Polyspermy also occurs during the in vitro fertilization of human eggs; however, the fate of such eggs is still under debate. Hence, the relationship between polyspermy and repetitive Ca2+ increases (Ca2+ oscillation) in mammals remains unknown. To address this issue, we used mouse sperm lacking extramitochondrial citrate synthase (eCS), which functions as a Ca2+ oscillation inducer; its lack causes retarded Ca2+ oscillation initiation (eCs-KO sperm). Elevated sperm concentrations normalize Ca2+ oscillation initiation. As expected, eCS deficiency enhanced polyspermy in both zona pellucida (ZP)-free and ZP-intact eggs despite producing the next generation of eCs-KO males. In conclusion, similarly to non-mammalian eggs, mouse eggs may develop normally under polyspermy conditions caused by problematic Ca2+ oscillation.


Asunto(s)
Señalización del Calcio , Semen , Humanos , Animales , Masculino , Ratones , Causalidad , Núcleo Celular , Citrato (si)-Sintasa , Mamíferos
3.
Biomolecules ; 13(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37189325

RESUMEN

In bacteria, polymers of inorganic phosphates, particularly linear polyphosphate, are used as alternative phosphate donors for adenosine triphosphate production. A six-chain form of sodium metaphosphate, sodium hexametaphosphate (SHMP), is believed to have no physiological functions in mammalian cells. In this study, we explored the possible effects of SHMP on mammalian cells, using mouse oocytes, which are useful for observing various spatiotemporal intracellular changes. Fertilization-competent oocytes were isolated from the oviducts of superovulated mice and cultured in an SHMP-containing medium. In the absence of co-incubation with sperm, SHMP-treated oocytes frequently formed pronuclei and developed into two-cell embryos owing to the increase in calcium concentration in the cytoplasm. We discovered an intriguing role for SHMP as an initiator of calcium rise in mouse oocytes, presumably in a wide variety of mammalian cells.


Asunto(s)
Señalización del Calcio , Calcio , Masculino , Animales , Ratones , Semen , Polifosfatos , Mamíferos
4.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37799198

RESUMEN

The mechanism by which seemingly normal sperm cause infertility is still under debate. Although CD9 is expressed in male reproductive tissues, its role in male fertility remains unclear. To address this, we investigated the role of CD9 in analyzing Cd9 -deficient ( Cd9 -KO) male mice. The litter size of Cd9 -KO males was comparable, regardless of mating experience. When Cd9 -KO males experienced their first mating chance, a considerable number of neonates died 48 hours after birth. Electron microscopy reveals the presence of CD9 in the epididymal space. Our results suggest that CD9 contributes to male fertility as an extracellular component.

5.
J Vet Med Sci ; 85(9): 912-920, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37438116

RESUMEN

An endogenous retrovirus-derived membrane protein, syncytin (SYN), contributes to placental function via trophoblast fusion. Multinuclear trophoblasts (syncytiotrophoblasts) physically and functionally mediate the interaction between fetal and maternal vessels in various ways. Suncus murinus (suncus) is a small mammalian species with a pregnancy duration of approximately 30 days, 1.5 times longer than mice. However, the molecular basis for the longer pregnancy duration is unknown. In this study, we first isolated two genes that encoded putative SYN proteins expressed in the suncus placenta, which were named syncytin-1-like proteins 1 and 2 (SYN1L1 and SYN1L2). When their expression vectors were introduced into cultured cells, suncus SYN1L2 was found to be active in cell fusion. Moreover, the SYN1L2 protein was homologous to a SYN1-like protein identified in greater mouse-eared bats (bat SYN1L) and was structurally compared with bat SYN1L and other SYN proteins, implying the presence of structural features of the SYN1L2 protein.


Asunto(s)
Quirópteros , Proteínas Gestacionales , Embarazo , Femenino , Animales , Placenta/metabolismo , Quirópteros/genética , Productos del Gen env/genética , Productos del Gen env/metabolismo , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Musarañas
6.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35663411

RESUMEN

The sperm consumes adenosine triphosphate (ATP) to maintain the cellular function, viability, acrosome reaction (AR), and motility. Extra-mitochondrial citrate synthase (eCS) catalyzes citrate production in the sperm head, and thus regulates sperm function through ATP synthesis, similarly to CS. This study aimed to investigate how eCS regulates AR. Herein, acrosome-reacted (ARed) sperms were rarely detected on the zona pellucida, and spontaneous ARed sperm in eCs -deficient (KO) sperm remained at low levels even with induced capacitation. Retarded AR of eCs -KO sperm was enhanced by cyclic adenosine 3',5'-monophosphate (cAMP) treatment. In conclusion, eCS regulates AR via a cAMP-dependent pathway, which presumably contributes to sperm metabolism.

7.
Nutrients ; 14(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35631296

RESUMEN

Supporting cells of oocytes, i.e., cumulus cells, control oocyte quality, which determines fertilization success. Therefore, the transformation of mature and immature cumulus cells (MCCs and ICCs, respectively) into dysmature cumulus cells (DCCs) with dead characteristics deteriorates oocyte quality. However, the molecular basis for this transformation remains unclear. Here, we explored the link between autophagic decline and cumulus transformation using cumulus cells from patients with infertility, female mice, and human granulosa cell-derived KGN cell lines. When human cumulus cells were labeled with LysoTracker probes, fluorescence corresponding to lysosomes was enhanced in DCCs compared to that in MCCs and ICCs. Similarly, treatment with the autophagy inhibitor chloroquine elevated LysoTracker fluorescence in both mouse cumulus cells and KGN cells, subsequently suppressing ovulation in female mice. Electron microscopy analysis revealed the proliferation of abnormal lysosomes in chloroquine-treated KGN cells. Conversely, the addition of an autophagy inducer, trehalose, suppressed chloroquine-driven problematic lysosomal anomalies and ameliorated ovulation problems. Our results suggest that autophagy maintains the healthy state of the supporting cells of human oocytes by suppressing the formation of lysosomes. Thus, our results provide insights into the therapeutic effects of trehalose on female fertility.


Asunto(s)
Oocitos , Trehalosa , Animales , Cloroquina/farmacología , Femenino , Fertilidad , Humanos , Lisosomas , Ratones , Trehalosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA