Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 16(5): 3014-21, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27045345

RESUMEN

A simple direct method for the rapid fabrication of zinc oxide nanotube-nanowire hybrid structure in an environmentally friendly way is described here. Zinc foils were anodized in an aqueous solution of washing soda and baking soda at room temperature in order to obtain the hybrid architecture. At the beginning of the process nanowires were formed on the substrate. The wider nanowires transformed into nanotubes in about a minute and grew in length with time. The morphological integrity was maintained upon heat treatment at temperatures up to the melting point of the substrate (∼400 °C) except that the nanotube wall became porous. The chemiresistor devices fabricated using the heat-treated structure exhibited high response to low-concentration volatile organic compounds that are considered markers for breast cancer. The response was not significantly affected by high humidity or presence of hydrogen, methane, or carbon dioxide. The devices are expected to find use as breath sensors for noninvasive early detection of breast cancer.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Nanotubos/química , Nanocables/química , Compuestos Orgánicos Volátiles/análisis , Óxido de Zinc/química , Biomarcadores de Tumor/análisis , Técnicas Biosensibles/métodos , Pruebas Respiratorias/instrumentación , Femenino , Humanos , Humedad , Porosidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Propiedades de Superficie , Termodinámica
2.
Nanoscale ; 10(8): 3863-3870, 2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29417121

RESUMEN

Manipulating the transport properties of titania nanotubes (NTs) is paramount in guaranteeing the material's successful implementation in various solid state applications. Here we present the unique semiconducting properties of individual titania NTs as revealed from thermoelectric and structural studies performed on the same individual NTs. The NTs were in the anatase phase fabricated by anodic oxidation and doped with intrinsic defects created by reducing the lattice thermally. Despite their polycrystalline nature and nanoscale walls, the doped NTs were found to be 4-5 orders of magnitude more electrically conducting than TiO2 nanowires and thin films, with values approaching the bulk single crystal conductivity. The reason for the high conductivity was found to be the high carrier concentration on the order of 1022 cm-3, which counteracted the low mobility values ∼0.006 cm2 V-1 s-1. Furthermore, this high level of carrier concentration transitioned the NTs to a degenerate state, which is the first such example in thermally doped titania NTs. More importantly, our study showed the creation of acceptor states along with donor states in individual nanotubes upon lattice reduction. These acceptor levels were found to be active at low temperatures when donor states were not ionized, shifting the Fermi level (Ef) from the conduction band to the valence band.

3.
Nanoscale ; 7(45): 19004-11, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26512924

RESUMEN

The thermal properties of nano-scale materials are largely influenced by their geometry. The zero, one and quasi one dimensional forms of the same material could exhibit unique thermal transport properties depending upon the shape and nano-scale feature size. In order to gain a clear understanding of the contributions from geometrical scattering effects on thermal transport, it is required to study these nano-materials in a single isolated form rather than in clusters or films. In the past decade, titanium dioxide nanotube arrays fabricated by anodic oxidation of titanium emerged as a useful semiconductor architecture for a variety of applications, particularly for solar energy conversion. Nonetheless, the thermal properties of individual nanotubes that are important for their use in high temperature applications have not been clearly understood. Here we report the thermal transport properties of individual titania nanotubes as revealed by our preliminary study using a suspended microdevice that facilitates the thermal conductivity measurements and crystal structure investigation on the same nanotube. The nanotubes were prepared by anodic oxidation of a titanium foil in HF-DMSO electrolyte at 60 V, having outer diameters in the range of 200 to 300 nm and wall thicknesses of ∼30 to 70 nm in either amorphous or polycrystalline anatase phase. The thermal conductivity of single nanotubes was found to be very close to that of the amorphous phase (1.5 W mK(-1) and 0.85 W mK(-1) respectively) and it was only half of the thermal conductivity of the nanotube arrays in the film form. The thermal conductivity of bulk TiO2 is known to be almost six times higher. The observed thermal conductivity suppression in single nanotubes was explained using a transport model developed by considering diffuse phonon-surface scattering and scattering of phonons by ionized impurities of concentrations in the order of 10(18)-10(19) cm(-3).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA