Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(4): 2353-2359, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31951124

RESUMEN

We present a new method for chemical characterization of micro- and nanoplastics based on thermal desorption-proton transfer reaction-mass spectrometry. The detection limit for polystyrene (PS) obtained is <1 ng of the compound present in a sample, which results in 100 times better sensitivity than those of previously reported by other methods. This allows us to use small volumes of samples (1 mL) and to carry out experiments without a preconcentration step. Unique features in the high-resolution mass spectrum of different plastic polymers make this approach suitable for fingerprinting, even when the samples contain mixtures of other organic compounds. Accordingly, we got a positive fingerprint of PS when just 10 ng of the polymer was present within the dissolved organic matter of snow. Multiple types of microplastics (polyethylene terephthalate (PET), polyvinyl chloride, and polypropylene carbonate), were identified in a snowpit from the Austrian Alps; however, only PET was detected in the nanometer range for both snowpit and surface snow samples. This is in accordance with other publications showing that the dominant form of airborne microplastics is PET fibers. The presence of nanoplastics in high-altitude snow indicates airborne transport of plastic pollution with environmental and health consequences yet to be understood.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Austria , Monitoreo del Ambiente , Nieve
2.
Chemosphere ; 352: 141410, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346510

RESUMEN

We report atmospheric fine micro- and nanoplastics concentrations from particulate matter (PM) samples of two size fractions (PM10, fine micro- and nanoplastics, and PM1, nanoplastics), which were collected at the remote high alpine station Sonnblick Observatory, Austria. Active sampling was performed from June 2021 until April 2022. Analysis was done using TD-PTR-MS to detect 6 different plastic types. Polyethylene terephthalate (PET), polyethylene (PE) and polypropylene/polypropylene carbonate (PP/PPC) were found to be the dominating species. PET was detected in almost all samples, while the other plastic types occurred more episodically. Furthermore, polyvinyl chloride (PVC), polystyrene (PS) and tire wear particles were detected in single samples. Considering the three main plastic types, average plastics concentrations were 35 and 21 ng m-³ with maximum concentrations of 165 and 113 ng m-³ for PM10 and PM1, respectively. Average polymer concentrations were higher in the summer/fall period than in winter/spring. In summer/fall, PM10 plastics concentrations were higher by a factor of 2 compared to PM1, while concentrations of both size classes were comparable in the winter/spring period. This suggests that in the colder season plastic particles arriving at the Eastern Alpine crests are mainly present as nanoplastics. The contribution of micro- and nanoplastics to organic matter at the remote site was found to be comparable to data determined at an urban site. We found significant correlations between the PET concentration and tracers originating from anthropogenic activities such as elemental carbon, nitrate, ammonium, and sulphate as well as organic carbon and arabitol.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Polipropilenos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Microplásticos/análisis , Tamaño de la Partícula , Austria , Monitoreo del Ambiente , Carbono/análisis , Plásticos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA