Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Bioscience ; 74(4): 253-268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38720908

RESUMEN

Managing coastal wetlands is one of the most promising activities to reduce atmospheric greenhouse gases, and it also contributes to meeting the United Nations Sustainable Development Goals. One of the options is through blue carbon projects, in which mangroves, saltmarshes, and seagrass are managed to increase carbon sequestration and reduce greenhouse gas emissions. However, other tidal wetlands align with the characteristics of blue carbon. These wetlands are called tidal freshwater wetlands in the United States, supratidal wetlands in Australia, transitional forests in Southeast Asia, and estuarine forests in South Africa. They have similar or larger potential for atmospheric carbon sequestration and emission reductions than the currently considered blue carbon ecosystems and have been highly exploited. In the present article, we suggest that all wetlands directly or indirectly influenced by tides should be considered blue carbon. Their protection and restoration through carbon offsets could reduce emissions while providing multiple cobenefits, including biodiversity.

2.
Environ Manage ; 72(4): 699-704, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452138

RESUMEN

Grazing by domestic livestock is the most widespread use of public lands in the American West (USA) and their effects on climate change and ways to mitigate those effects are of interest to land managers, policy makers, and the broader public. Kauffman et al. (2022a) provided a meta-analysis of the ecosystem impacts, greenhouse gas (GHG) emissions, and social costs of carbon (SCC) associated with livestock grazing on public lands in the western USA. They determined that GHG emissions from cattle on public lands equaled 12.4 million t CO2e/year. At the scale of land use planning utilized by federal agencies, GHG emissions associated with allocated livestock numbers will typically exceed US Environmental Protection Agencies' reporting limits (25,000 t) for certain industrial greenhouse gas emitters. As such, these are essentially unreported sources of GHG emissions from public lands. Using the US government's most recent SCC estimate of $51/t, Kauffman et al. (2022a) determined the total SCC of cattle grazing on public lands to be approximately $264-630 million/year. However, recent advances in the determination of SCC reveal this is to be an underestimate. Using the latest science results in an estimated SCC of $1.1-2.4 billion/year for grazing on public lands. Furthermore, the SCC borne by the public exceeds the economic benefits to private livestock permittees by over $926 million/year. Cessation of public lands grazing is an environmentally and economically sound mitigation and adaptation approach to addressing the climate crisis; an approach that will also facilitate restoration of the myriad of ecosystem services provided by intact wildland ecosystems.


Asunto(s)
Ecosistema , Gases de Efecto Invernadero , Animales , Bovinos , Ganado , Cambio Climático , Carbono , Efecto Invernadero
3.
Glob Chang Biol ; 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35470521

RESUMEN

Mangrove forests are important carbon sinks and this is especially true for Indonesia where about 24% of the world's mangroves exist. Unfortunately, vast expanses of these mangroves have been deforested, degraded or converted to other uses resulting in significant greenhouse gas emissions. The objective of this study was to quantify the climate change mitigation potential of mangrove conservation and restoration in Indonesia. We calculated the emission factors from the dominant land uses in mangroves, determined mangrove deforestation rates and quantified the total emissions and the potential emission reductions that could be achieved from mangrove conservation and restoration. Based upon our analysis of the carbon stocks and emissions from land use in mangroves we found: (1) Indonesia's mangrove ecosystem carbon stocks are amongst the highest of any tropical forest type; (2) mangrove deforestation results in greenhouse gas emissions that far exceed that of upland tropical deforestation; (3) in the last decade the rates of deforestation in Indonesian mangroves have remained high; and (4) conservation and restoration of mangroves promise to sequester significant quantities of carbon. While mangroves comprise only ≈2.6% of Indonesia's total forest area, their degradation and deforestation accounted for ≈10% of total greenhouse gas emissions arising from the forestry sector. The large source of greenhouse gas emissions from a relatively small proportion of the forest area underscores the value for inclusion of mangroves as a natural climate solution (NCS). Mangrove conservation is far more effective than mangrove restoration in carbon emissions reductions and an efficient pathway to achieve Indonesia's nationally determined contribution (NDC) targets. The potential emission reduction from halting deforestation of primary and secondary mangroves coupled with restoration activities could result in an emission reduction equivalent to 8% of Indonesia's 2030 NDC emission reduction targets from the forestry sector.

4.
Environ Manage ; 69(6): 1137-1152, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35366068

RESUMEN

Public lands of the USA can play an important role in addressing the climate crisis. About 85% of public lands in the western USA are grazed by domestic livestock, and they influence climate change in three profound ways: (1) they are significant sources of greenhouse gases through enteric fermentation and manure deposition; (2) they defoliate native plants, trample vegetation and soils, and accelerate the spread of exotic species resulting in a shift in landscape function from carbon sinks to sources of greenhouse gases; and (3) they exacerbate the effects of climate change on ecosystems by creating warmer and drier conditions. On public lands one cow-calf pair grazing for one month (an "animal unit month" or "AUM") produces 875 kg CO2e through enteric fermentation and manure deposition with a social carbon cost of nearly $36 per AUM. Over 14 million AUMs of cattle graze public lands of the western USA each year resulting in greenhouse gas emissions of 12.4 Tg CO2e year-1. The social costs of carbon are > $500 million year-1 or approximately 26 times greater than annual grazing fees collected by managing federal agencies. These emissions and social costs do not include the likely greater ecosystems costs from grazing impacts and associated livestock management activities that reduce biodiversity, carbon stocks and rates of carbon sequestration. Cessation of grazing would decrease greenhouse gas emissions, improve soil and water resources, and would enhance/sustain native species biodiversity thus representing an important and cost-effective adaptive approach to climate change.


Asunto(s)
Cambio Climático , Gases de Efecto Invernadero , Animales , Carbono , Bovinos , Ecosistema , Femenino , Ganado , Estiércol
5.
Glob Chang Biol ; 27(12): 2856-2866, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33644947

RESUMEN

Mangroves have among the highest carbon densities of any tropical forest. These 'blue carbon' ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. Incorporating mangroves into Nationally Determined Contributions to the Paris Agreement and their valuation on carbon markets requires predicting how the management of different land-uses can prevent future greenhouse gas emissions and increase CO2 sequestration. We integrated comprehensive global datasets for carbon stocks, mangrove distribution, deforestation rates, and land-use change drivers into a predictive model of mangrove carbon emissions. We project emissions and foregone soil carbon sequestration potential under 'business as usual' rates of mangrove loss. Emissions from mangrove loss could reach 2391 Tg CO2 eq by the end of the century, or 3392 Tg CO2 eq when considering foregone soil carbon sequestration. The highest emissions were predicted in southeast and south Asia (West Coral Triangle, Sunda Shelf, and the Bay of Bengal) due to conversion to aquaculture or agriculture, followed by the Caribbean (Tropical Northwest Atlantic) due to clearing and erosion, and the Andaman coast (West Myanmar) and north Brazil due to erosion. Together, these six regions accounted for 90% of the total potential CO2 eq future emissions. Mangrove loss has been slowing, and global emissions could be more than halved if reduced loss rates remain in the future. Notably, the location of global emission hotspots was consistent with every dataset used to calculate deforestation rates or with alternative assumptions about carbon storage and emissions. Our results indicate the regions in need of policy actions to address emissions arising from mangrove loss and the drivers that could be managed to prevent them.


Asunto(s)
Carbono , Humedales , Asia , Brasil , Secuestro de Carbono , Región del Caribe , Ecosistema , Paris
6.
J Environ Manage ; 297: 113381, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34325365

RESUMEN

Drought events may induce mangrove mortality and dieback events worldwide as a result of climate extremes. As mangroves sequester large quantities of carbon, quantifying the losses of these stocks following climate disturbances may guide wetland governance strategies globally. In Southeast Brazil, we determined the total ecosystem carbon stocks (TECS) of pristine mangroves that were up to 1851 Mg of carbon per hectare (Mg C ha-1), which are the highest stocks measured from South American and raising estimates of Brazil's mangrove TECS to 0.52 Pg C. A mangrove mortality event in the same estuary resulted in a 14.6 % decrease in TECS (270.5 Mg C ha-1) and loss of 20 % of mangrove soil carbon within less than 2-years. Carbon dioxide emissions from this impact were 992.8 Mg CO2e ha-1, which are slightly lower than emissions from land use disturbances on mangroves worldwide. Our results suggest that climate effects on mangroves can become significant sources of greenhouse gases globally.


Asunto(s)
Ecosistema , Humedales , Brasil , Secuestro de Carbono , Cambio Climático , Suelo
7.
Glob Chang Biol ; 26(10): 5679-5692, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32779311

RESUMEN

The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0-100 cm portion of the profile accounted for only 48%-53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land-use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long-term sea-level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.


Asunto(s)
Carbono , Ecosistema , Carbono/análisis , Secuestro de Carbono , América del Norte , Noroeste de Estados Unidos , Suelo , Estados Unidos , Humedales
8.
Biol Lett ; 14(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30185605

RESUMEN

In addition to the largest existing expanse of tropical forests, the Brazilian Amazon has among the largest area of mangroves in the world. While recognized as important global carbon sinks that, when disturbed, are significant sources of greenhouse gases, no studies have quantified the carbon stocks of these vast mangrove forests. In this paper, we quantified total ecosystem carbon stocks of mangroves and salt marshes east of the mouth of the Amazon River, Brazil. Mean ecosystem carbon stocks of the salt marshes were 257 Mg C ha-1 while those of mangroves ranged from 361 to 746 Mg C ha-1 Although aboveground mass was high relative to many other mangrove forests (145 Mg C ha-1), soil carbon stocks were relatively low (340 Mg C ha-1). Low soil carbon stocks may be related to coarse textured soils coupled with a high tidal range. Nevertheless, the carbon stocks of the Amazon mangroves were over twice those of upland evergreen forests and almost 10-fold those of tropical dry forests.


Asunto(s)
Carbono/análisis , Suelo/química , Humedales , Brasil , Ecosistema
9.
Ecol Appl ; 27(3): 859-874, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27992951

RESUMEN

Coastal ecosystems produce and sequester significant amounts of carbon ("blue carbon"), which has been well documented in humid and semi-humid regions of temperate and tropical climates but less so in arid regions where mangroves, marshes, and seagrasses exist near the limit of their tolerance for extreme temperature and salinity. To better understand these unique systems, we measured whole-ecosystem carbon stocks in 58 sites across the United Arab Emirates (UAE) in natural and planted mangroves, salt marshes, seagrass beds, microbial mats, and coastal sabkha (inter- and supratidal unvegetated salt flats). Natural mangroves held significantly more carbon in above- and belowground biomass than other vegetated ecosystems. Planted mangrove carbon stocks increased with age, but there were large differences for sites of similar age. Soil carbon varied widely across sites (2-367 Mg C/ha), with ecosystem averages that ranged from 49 to 156 Mg C/ha. For the first time, microbial mats were documented to contain soil carbon pools comparable to vascular plant-dominated ecosystems, and could arguably be recognized as a unique blue carbon ecosystem. Total ecosystem carbon stocks ranged widely from 2 to 515 Mg C/ha (seagrass bed and mangrove, respectively). Seagrass beds had the lowest carbon stock per unit area, but the largest stock per total area due to their large spatial coverage. Compared to similar ecosystems globally, mangroves and marshes in the UAE have lower plant and soil carbon stocks; however, the difference in soil stocks is far larger than with plant stocks. This incongruent difference between stocks is likely due to poor carbon preservation under conditions of weakly reduced soils (200-350 mV), coarse-grained sediments, and active shoreline migration. This work represents the first attempt to produce a country-wide coastal ecosystem carbon accounting using a uniform sampling protocol, and was motivated by specific policy goals identified by the Abu Dhabi Global Environmental Data Initiative. These carbon stock data supported two objectives: to quantify carbon stocks and infer sequestration capacity in arid blue carbon ecosystems, and to explore the potential to incorporate blue carbon science into national reporting and planning documents.


Asunto(s)
Alismatales/fisiología , Secuestro de Carbono , Ecosistema , Emiratos Árabes Unidos , Humedales
10.
Ecol Appl ; 24(3): 518-27, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24834737

RESUMEN

Mangroves are recognized to possess a variety of ecosystem services including high rates of carbon sequestration and storage. Deforestation and conversion of these ecosystems continue to be high and have been predicted to result in significant carbon emissions to the atmosphere. Yet few studies have quantified the carbon stocks or losses associated with conversion of these ecosystems. In this study we quantified the ecosystem carbon stocks of three common mangrove types of the Caribbean as well as those of abandoned shrimp ponds in areas formerly occupied by mangrove-a common land-use conversion of mangroves throughout the world. In the mangroves of the Montecristi Province in Northwest Dominican Republic we found C stocks ranged from 706 to 1131 Mg/ha. The medium-statured mangroves (3-10 m in height) had the highest C stocks while the tall (> 10 m) mangroves had the lowest ecosystem carbon storage. Carbon stocks of the low mangrove (shrub) type (< 3 m) were relatively high due to the presence of carbon-rich soils as deep as 2 m. Carbon stocks of abandoned shrimp ponds were 95 Mg/ha or approximately 11% that of the mangroves. Using a stock-change approach, the potential emissions from the conversion of mangroves to shrimp ponds ranged from 2244 to 3799 Mg CO2e/ha (CO2 equivalents). This is among the largest measured C emissions from land use in the tropics. The 6260 ha of mangroves and converted mangroves in the Montecristi Province are estimated to contain 3,841,490 Mg of C. Mangroves represented 76% of this area but currently store 97% of the carbon in this coastal wetland (3,696,722 Mg C). Converted lands store only 4% of the total ecosystem C (144,778 Mg C) while they comprised 24% of the area. By these metrics the replacement of mangroves with shrimp and salt ponds has resulted in estimated emissions from this region totaling 3.8 million Mg CO2e or approximately 21% of the total C prior to conversion. Given the high C stocks of mangroves, the high emissions from their conversion, and the other important functions and services they provide, their inclusion in climate-change mitigation strategies is warranted.


Asunto(s)
Avicennia/fisiología , Carbono/metabolismo , Monitoreo del Ambiente , Rhizophoraceae/fisiología , Humedales , Carbono/química , Cambio Climático , Conservación de los Recursos Naturales , República Dominicana , Suelo/química , Agua/química
11.
Nat Commun ; 15(1): 1549, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438380

RESUMEN

The Legal Amazon of Brazil holds vast mangrove forests, but a lack of awareness of their value has prevented their inclusion into results-based payments established by the United Nations Framework Convention on Climate Change. Based on an inventory from over 190 forest plots in Amazon mangroves, we estimate total ecosystem carbon stocks of 468 ± 67 Megagrams (Mg) ha-1; which are significantly higher than Brazilian upland biomes currently included into national carbon offset financing. Conversion of mangroves results in potential emissions of 1228 Mg CO2e ha-1, which are 3-fold higher than land use emissions from conversion of the Amazon rainforest. Our work provides the foundation for the inclusion of mangroves in Brazil's intended Nationally Determined Contribution, and here we show that halting mangrove deforestation in the Legal Amazon would generate avoided emissions of 0.9 ± 0.3 Teragrams (Tg) CO2e yr-1; which is equivalent to the annual carbon accumulation in 82,400 ha of secondary forests.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Brasil , Carbono , Cambio Climático
12.
PLoS One ; 17(1): e0250136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35061670

RESUMEN

Riparian ecosystem restoration has been accomplished through exclusion of livestock using corridor fencing along hundreds of kilometers of streams in the western United States, for the benefit of riparian-obligate wildlife and endangered fishes. Yet, there are limited scientific studies that have evaluated more than short-term shifts in vegetation composition and diversity at a single location or handful of locations following grazing. We sampled riparian vegetation composition along 11-paired grazed and ungrazed (exclosed) stream reaches in northeastern Oregon. Exclosure ages ranged from 2 to >30 years and grazing treatments varied from light grazing every one out of three years to heavy season-long grazing. Species richness and diversity was higher in the ungrazed reaches (p = 0.002). The abundance of native sedges (Carex spp.) and broad-leaved forbs were also significantly (p ≤ 0.05) greater in ungrazed areas. In contrast, exotic species adapted to grazing such as Poa pratensis and Trifolium repens were more abundant in grazed stream reaches. The prevalence of hydrophytic species significantly increased (p ≤ 0.01) in ungrazed reaches, (based on wetland species indicator scores), indicating that wetland-dominated communities within the ungrazed stream reaches were replacing ones adapted to drier environments. The increased abundance of facultative and wetland-obligate species in ungrazed reaches compared to grazed reaches suggests that livestock grazing exacerbates those climate change effects also leading to warmer and drier conditions. Further, riparian-obligate shrub cover along the streambank was higher in 7 of 8 exclosures that were older than 5 years (p = 0.05). As a restoration approach, the inherent resilience of riparian ecosystems exhibited in ungrazed riparian zones suggest positive feedbacks to other beneficial ecosystem processes such as increased species and habitat diversity, increased carbon sequestration, enhanced allochthonous inputs and greater sediment retention, that would affect the aquatic and terrestrial biota, water quality, and stream morphology.


Asunto(s)
Ganado , Animales
13.
Curr Biol ; 32(16): 3636-3640.e2, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35863350

RESUMEN

Both freshwater floodplain (várzeas and igapós) forests and brackish-saline mangroves are abundant and well-described ecosystems in Brazil.1 However, an interesting and unique wetland forest exists in the Amazon Delta where extensive mangroves occur in essentially freshwater tidal environments. Unlike the floodplain forests found upriver, the hydrology of these ecosystems is driven largely by large macro-tides of 4-8 m coupled with the significant freshwater discharge from the Amazon River. We explored these mangroves on the Amazon Delta (00°52' N to 01°41' N) and found surface water salinity to be consistently <5; soil pore water salinity in these mangrove forests ranged from 0 nearest the Amazon mouth to only 5-11 at the coastal margins to the north (01°41' N, 49°55' W). We also recorded a unique mix of mangrove-obligate (Avicennia sp., Rhizophora mangle) and facultative-wetland species (Mauritia flexuosa, Pterocarpus sp.) dominating these forests. This unique mix of plant species and soil porewater chemistry exists even along the coastal strands and active coastlines of the Atlantic Ocean. Part of these unique mangroves have escaped current global satellite mapping efforts, and we estimate that they may add over 180 km2 (20% increase in mangrove area) within the Amazon Delta. Despite having a unique structure and function, these freshwater-brackish ecosystems likely provide similar ecosystem services to most mangroves worldwide, such as sequestering large quantities of organic carbon, protection of shoreline ecosystems from erosion, and habitats to many terrestrial and aquatic species (monkeys, birds, crabs, and fish).


Asunto(s)
Avicennia , Ecosistema , Animales , Suelo/química , Agua , Humedales
14.
Ecol Appl ; 19(5): 1211-22, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19688928

RESUMEN

Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential to sequester atmospheric C. These options require an understanding of and capability to quantify C dynamics at landscape scales. Because of the diversity of physical and biotic features of tropical forests as well as approaches and intensities of land uses within the neotropics, there are tremendous differences in the capacity of different landscapes to store and sequester C. Major gaps in our current knowledge include quantification of C pools, rates and patterns of biomass loss following land-cover change, and quantification of the C storage potential of secondary forests following abandonment. In this paper we present a synthesis and further analyses from recent studies that describe C pools, patterns of C decline associated with land use, and rates of C accumulation following secondary-forest establishment--all information necessary for climate-change mitigation options. Ecosystem C pools of Neotropical primary forests minimally range from approximately 141 to 571 Mg/ha, demonstrating tremendous differences in the capacity of different forests to store C. Most of the losses in C and nutrient pools associated with conversion occur when fires are set to remove the slashed forest to prepare sites for crop or pasture establishment. Fires burning slashed primary forests have been found to result in C losses of 62-80% of prefire aboveground pools in dry (deciduous) forest landscapes and 29-57% in wet (evergreen) forest landscapes. Carbon emissions equivalent to the aboveground primary-forest pool arise from repeated fires occurring in the first 4 to 10 years following conversion. Feedbacks of climate change, land-cover change, and increasing habitat fragmentation may result in increases of both the area burned and the total quantity of biomass consumed per unit area by fire. These effects may well limit the capacity for future tropical forests to sequester C and nutrients.


Asunto(s)
Biomasa , Carbono/análisis , Ecosistema , Árboles/química , Agricultura , Árboles/crecimiento & desarrollo , Clima Tropical
15.
Ecol Evol ; 8(11): 5530-5540, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29938071

RESUMEN

Mangroves of the semiarid Caatinga region of northeastern Brazil are being rapidly converted to shrimp pond aquaculture. To determine ecosystem carbon stocks and potential greenhouse gas emissions from this widespread land use, we measured carbon stocks of eight mangrove forests and three shrimp ponds in the Acaraú and Jaguaribe watersheds in Ceará state, Brazil. The shrimp ponds were paired with adjacent intact mangroves to ascertain carbon losses and potential emissions from land conversion. The mean total ecosystem carbon stock of mangroves in this semiarid tropical landscape was 413 ± 94 Mg C/ha. There were highly significant differences in the ecosystem carbon stocks between the two sampled estuaries suggesting caution when extrapolating carbon stock across different estuaries even in the same landscape. Conversion of mangroves to shrimp ponds resulted in losses of 58%-82% of the ecosystem carbon stocks. The mean potential emissions arising from mangrove conversion to shrimp ponds was 1,390 Mg CO2e/ha. Carbon losses were largely from soils which accounted for 81% of the total emission. Losses from soils >100 cm in depth accounted for 33% of the total ecosystem carbon loss. Soil carbon losses from shrimp pond conversion are equivalent to about 182 years of soil carbon accumulation. Losses from mangrove conversion are about 10-fold greater than emissions from conversion of upland tropical dry forest in the Brazilian Caatinga underscoring the potential value for their inclusion in climate change mitigation activities.

16.
PLoS One ; 12(11): e0187749, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131832

RESUMEN

Globally, it is recognized that blue carbon ecosystems, especially mangroves, often sequester large quantities of carbon and are of interest for inclusion in climate change mitigation strategies. While 19% of the world's mangroves are in Africa, they are among the least investigated of all blue carbon ecosystems. We quantified total ecosystem carbon stocks in 33 different mangrove stands along the Atlantic coast of West-Central Africa from Senegal to Southern Gabon spanning large gradients of latitude, soil properties, porewater salinity, and precipitation. Mangrove structure ranged from low and dense stands that were <1m in height and >35,000 trees ha-1 to tall and open stands >40m in height and <100 ha-1. Tremendous variation in ecosystem carbon (C) stocks was measured ranging from 154 to 1,484 Mg C ha-1. The mean total ecosystem carbon stock for all mangroves of West-Central Africa was 799 Mg C ha-1. Soils comprised an average of 86% of the total carbon stock. The greatest carbon stocks were found in the tall mangroves of Liberia and Gabon North with a mean >1,000 Mg C ha-1. The lowest carbon stocks were found in the low mangroves of the semiarid region of Senegal (463 Mg C ha-1) and in mangroves on coarse-textured soils in Gabon South (541 Mg C ha-1). At the scale of the entirety of West-Central Africa, total ecosystem carbon stocks were poorly correlated to aboveground ecosystem carbon pools, precipitation, latitude and soil salinity (r2 = ≤0.07 for all parameters). Based upon a sample of 158 sites from Africa, Asia and Latin America that were sampled in a similar manner to this study, the global mean of carbon stocks for mangroves is 885 Mg C ha-1. The ecosystem carbon stocks of mangroves for West-Central Africa are slightly lower than those of Latin America (940 Mg C ha-1) and Asia (1049 Mg C ha-1) but substantially higher than the default Intergovernmental Panel on Climate Change (IPCC) values for mangroves (511 Mg C ha-1). This study provides an improved estimation of default estimates (Tier 1 values) of mangroves for Asia, Latin America, and West Central Africa.


Asunto(s)
Carbono/metabolismo , Conservación de los Recursos Naturales , Ecosistema , Humedales , África Central , África Occidental , Biomasa , Cambio Climático , Internacionalidad , Suelo/química
17.
Carbon Balance Manag ; 12(1): 12, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28527145

RESUMEN

BACKGROUND: A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth published by Wetlands International (WI) and the Indonesian Ministry of Agriculture (MoA), and used regionally specific values of carbon density to calculate carbon stocks. RESULTS: Peatland extent and volume published in the MoA maps are lower than those in the WI maps, resulting in lower estimates of carbon storage. We estimate Indonesia's total peat carbon store to be within 13.6 GtC (the low MoA map estimate) and 40.5 GtC (the high WI map estimate) with a best estimate of 28.1 GtC: the midpoint of medium carbon stock estimates derived from WI (30.8 GtC) and MoA (25.3 GtC) maps. This estimate is about half of previous assessments which used an assumed average value of peat thickness for all Indonesian peatlands, and revises the current global tropical peat carbon pool to 75 GtC. Yet, these results do not diminish the significance of Indonesia's peatlands, which store an estimated 30% more carbon than the biomass of all Indonesian forests. The largest discrepancy between maps is for the Papua province, which accounts for 62-71% of the overall differences in peat area, volume and carbon storage. According to the MoA map, 80% of Indonesian peatlands are <300 cm thick and thus vulnerable to conversion outside of protected areas according to environmental regulations. The carbon contained in these shallower peatlands is conservatively estimated to be 10.6 GtC, equivalent to 42% of Indonesia's total peat carbon and about 12 years of global emissions from land use change at current rates. CONCLUSIONS: Considering the high uncertainties in peatland extent, volume and carbon storage revealed in this assessment of current maps, a systematic revision of Indonesia's peat maps to produce a single geospatial reference that is universally accepted would improve national peat carbon storage estimates and greatly benefit carbon cycle research, land use management and spatial planning.

18.
Oecologia ; 104(4): 397-408, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28307654

RESUMEN

Deforestation in the Brazilian Amazon has resulted in the conversion of >230,000 km2 of tropical forest, yet little is known on the quantities of biomass consumed or the losses of nutrients from the ecosystem. We quantified the above-ground biomass, nutrient pools and the effects of biomass burning in four slashed primary tropical moist forests in the Brazilian Amazon. Total above-ground biomass (TAGB) ranged from 292 Mg ha-1 to 436 Mg ha-1. Coarse wood debris (>20.5 cm diameter) was the dominant fuel component. However, structure of the four sites were variable. Coarse wood debris comprised from 44% to 69% of the TAGB, while the forest floor (litter and rootmat) comprised from 3.7 to 8.0% of the TAGB. Total biomass consumption ranged from 42% to 57%. Fires resulted in the consumption of >99% of the litter and rootmat, yet <50% of the coarse wood debirs. Dramatic losses in C, N, and S were quantified. Lesser quantities of P, K, and Ca were lost by combustion processes. Carbon losses from the ecosystem were 58-112 Mg ha-1. Nitrogen losses ranged from 817 to 1605 kg ha-1 and S losses ranged from 92 to 122 kg ha-1. This represents losses that are as high as 56%, 68%, and 49% of the total above-ground pools of these nutrients, respectively. Losses of P were as high as 20 kg ha-1 or 32% of the above-ground pool. Losses to the atmosphere arising from primary slash fires were variable among sites due to site differences in concentration, fuel biomass, and fuel structure, climatic fluctuations, and anthropogenic influences. Compared to fires in other forest ecosystems, fires in slashed primary tropical evergreen forests result in among the highest total losses of nutrients ever measured. In addition, the proportion of the total nutrient pool lost from slash fires is higher in this ecosystem compared to other ecosystems due to a higher percentage of nutrients stored in above-ground biomass.

19.
PLoS One ; 8(2): e56569, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23457583

RESUMEN

Coastal wetlands can have exceptionally large carbon (C) stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR) in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes), and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N) and phosphorus (P) from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1)) followed by medium mangroves (623±41 Mg ha(-1)), dwarf mangroves (381±52 Mg ha(-1)) and marshes (177±73 Mg ha(-1)). At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%). Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.


Asunto(s)
Carbono/metabolismo , Fenómenos Geológicos , Clima Tropical , Humedales , Biomasa , Región del Caribe , México , Poaceae/metabolismo , Salinidad , Suelo/química , Árboles/metabolismo , Madera/metabolismo
20.
PLoS One ; 7(9): e43542, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22962585

RESUMEN

Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.


Asunto(s)
Dióxido de Carbono/química , Huella de Carbono/estadística & datos numéricos , Carbono/química , Ecosistema , Humedales , Atmósfera , Ciclo del Carbono , Huella de Carbono/economía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA