RESUMEN
AIMS/HYPOTHESIS: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS: Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.
Asunto(s)
Autoanticuerpos , Péptido C , Diabetes Mellitus Tipo 1 , Hemoglobina Glucada , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/epidemiología , Adolescente , Niño , Masculino , Femenino , Péptido C/sangre , Adulto , Adulto Joven , Preescolar , Autoanticuerpos/sangre , Hemoglobina Glucada/metabolismo , Glucemia/metabolismo , Estudios de Cohortes , Lactante , Europa (Continente)/epidemiología , Persona de Mediana Edad , Células Secretoras de Insulina/metabolismoRESUMEN
AIMS: Heterogeneity in the rate of ß-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis. METHODS: We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in ß-cell mass measured as fasting C-peptide. RESULTS: Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in ß-cell function. The second signature was related to translation and viral infection was inversely associated with change in ß-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid ß-cell decline. CONCLUSIONS: Features that differ between individuals with slow and rapid decline in ß-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect.
Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/metabolismo , Femenino , Masculino , Adulto , Progresión de la Enfermedad , Biomarcadores/análisis , Estudios de Seguimiento , Adolescente , Adulto Joven , Pronóstico , Proteómica , Péptido C/análisis , Péptido C/sangre , Niño , Persona de Mediana Edad , Genómica , MultiómicaRESUMEN
It is internationally recognized to use clinical decision limits (CDL) when interpreting the lipid levels in both adults and children, even though the evidence for children is scarce. The purpose of this study is to describe how lipid levels progress in healthy Danish children ages 5 to 17 years. This study is based on the Childhood Health, Activity, and Motor Performance School Study Denmark (CHAMPS-study DK) consisting of 1456 observations of schoolchildren aged 5 to 17 years. Participants have been tested for blood levels of total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, and remnant cholesterol levels are calculated. Finally, sex-specific percentile reference curves are presented. Percentile reference curves stratified by sex were generated for all cholesterols and showed that the total cholesterol level peaks at 4.32 mmol/l in 10-year-old boys and 4.46 mmol/l in nine-year-old girls. HDL levels in boys peak at 1.72 mmol/l in nine-year-old boys. HDL levels in girls and LDL levels in both sexes are nearly constant. Triglycerides kept rising to the age of 17 years in both sexes and remnant cholesterol decreased from age 5 to 17 years in both sexes. BMI z-score adjustment revealed no significant association with total cholesterol in both sexes but a significant association between HDL, LDL, triglycerides, and remnant cholesterol. This study is the first to generate percentile reference curves for blood levels of total cholesterol, LDL, HDL, triglycerides, and remnant cholesterol in a cohort of healthy Danish children aged 5 to 17 years.
Asunto(s)
Triglicéridos , Humanos , Adolescente , Niño , Masculino , Femenino , Preescolar , Dinamarca , Triglicéridos/sangre , HDL-Colesterol/sangre , Colesterol/sangre , Estudios de Cohortes , Valores de Referencia , LDL-Colesterol/sangre , Lípidos/sangreRESUMEN
AlkB homologue 5 (ALKBH5) is a ferrous iron and 2-oxoglutarate dependent oxygenase that demethylates RNA N6-methyladenosine (m6A), a post-transcriptional RNA modification with an emerging set of regulatory roles. Along with the fat mass and obesity-associated protein (FTO), ALKBH5 is one of only two identified human m6A RNA oxidizing enzymes and is a potential target for cancer treatment. Unlike FTO, ALKBH5 efficiently catalyzes fragmentation of its proposed nascent hemiaminal intermediate to give formaldehyde and a demethylated nucleoside. A detailed analysis of the molecular mechanisms used by ALKBH5 for substrate recognition and m6A demethylation is lacking. We report three crystal structures of ALKBH5 in complex with an m6A-ssRNA 8-mer substrate and supporting biochemical analyses. Strikingly, the single-stranded RNA substrate binds to the active site of ALKBH5 in a 5'-3' orientation that is opposite to single-stranded or double-stranded DNA substrates observed for other AlkB subfamily members, including single-stranded DNA bound to FTO. The combined structural and biochemical results provide insight into the preference of ALKBH5 for substrates containing a (A/G)m6AC consensus sequence motif. The results support a mechanism involving formation of an m6A hemiaminal intermediate, followed by efficient ALKBH5 catalyzed demethylation, enabled by a proton shuttle network involving Lys132 and Tyr139.
Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , ARN , Adenosina/análogos & derivados , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/química , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Desmetilación , Humanos , ARN/químicaRESUMEN
Alginate lyase (AL) is a polysaccharide-degrading enzyme that can degrade alginate by hydrolyzing glycosidic bonds and produces unsaturated alginate oligosaccharides (AOSs). These AOSs have wide therapeutic and nutraceutical applications. However, to produce alginate oligosaccharides in a cost-effective manner is challenging due to the low availability and high cost of this degrading enzyme. Immobilization of the enzyme facilitates industrial applications owing to its stability, reusability, and cost-effectiveness. This study was focused on the enhancement of the properties of alginate lyase and improvement of the production of AOS. Alginate lyase was immobilized on magnetic nanoparticles (NPs) using glutaraldehyde as the crosslinker. The study showed that the maximum binding achieved between NPs and protein in the enzyme was 71% at a ratio of 1:150 NP:protein. As a result of immobilization, the optimum activity of free enzyme which was obtained at 37 °C and pH 7.4 changed to 45 °C and pH 9. Furthermore, the enzyme was thermostable at 45 °C for 3 h with up to 50% reusability for six consecutive cycles. Storage stability after 15 days showed ~67% relative hydrolysis of alginate. The free alginate lyase (25 IU) showed 76% raw biomass (seaweed) hydrolysis which is higher compared to 63% provided by the immobilized enzyme. As a result of efficient hydrolysis, AOSs with molecular weight profile of 370-1040 kDa were produced and detected using HPLC.
Asunto(s)
Alginatos , Polisacárido Liasas , Oligosacáridos , BiomasaRESUMEN
AIMS/HYPOTHESIS: We previously demonstrated that N-glycosylation of plasma proteins and IgGs is different in children with recent-onset type 1 diabetes compared with their healthy siblings. To search for genetic variants contributing to these changes, we undertook a genetic association study of the plasma protein and IgG N-glycome in type 1 diabetes. METHODS: A total of 1105 recent-onset type 1 diabetes patients from the Danish Registry of Childhood and Adolescent Diabetes were genotyped at 183,546 genetic markers, testing these for genetic association with variable levels of 24 IgG and 39 plasma protein N-glycan traits. In the follow-up study, significant associations were validated in 455 samples. RESULTS: This study confirmed previously known plasma protein and/or IgG N-glycosylation loci (candidate genes MGAT3, MGAT5 and ST6GAL1, encoding beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase, alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase and ST6 beta-galactoside alpha-2,6-sialyltransferase 1 gene, respectively) and identified novel associations that were not previously reported for the general European population. First, novel genetic associations of IgG-bound glycans were found with SNPs on chromosome 22 residing in two genomic intervals close to candidate gene MGAT3; these include core fucosylated digalactosylated disialylated IgG N-glycan with bisecting N-acetylglucosamine (GlcNAc) (pdiscovery=7.65 × 10-12, preplication=8.33 × 10-6 for the top associated SNP rs5757680) and core fucosylated digalactosylated glycan with bisecting GlcNAc (pdiscovery=2.88 × 10-10, preplication=3.03 × 10-3 for the top associated SNP rs137702). The most significant genetic associations of IgG-bound glycans were those with MGAT3. Second, two SNPs in high linkage disequilibrium (missense rs1047286 and synonymous rs2230203) located on chromosome 19 within the protein coding region of the complement C3 gene (C3) showed association with the oligomannose plasma protein N-glycan (pdiscovery=2.43 × 10-11, preplication=8.66 × 10-4 for the top associated SNP rs1047286). CONCLUSIONS/INTERPRETATION: This study identified novel genetic associations driving the distinct N-glycosylation of plasma proteins and IgGs identified previously at type 1 diabetes onset. Our results highlight the importance of further exploring the potential role of N-glycosylation and its influence on complement activation and type 1 diabetes susceptibility.
Asunto(s)
Diabetes Mellitus Tipo 1 , Adolescente , Niño , Humanos , Glicosilación , Diabetes Mellitus Tipo 1/genética , Glicómica/métodos , Estudios de Seguimiento , N-Acetilglucosaminiltransferasas/genética , Inmunoglobulina G/metabolismo , Proteínas Sanguíneas/metabolismo , Polisacáridos/metabolismoRESUMEN
Scheuermann's disease is a rigid progressive kyphosis occurring in late childhood to adolescence. It is the most common cause of sagittal imbalance and angular progressive kyphosis in adolescents associated with back pain. The exact etiology of the disease is unclear, but it is characterized by defective growth of the end plate that may result from excessive mechanical stress on a weakened end plate during spinal growth. Several other theories have been proposed, and it is thought to be a multifactorial disease occurring as a result of the interplay of multiple factors. The radiographic features consist of anterior vertebral body wedging, irregular end plates, Schmorl's nodes, and intervertebral disk degeneration. The natural history and evolution of this disease is also unknown. Conservative management with physiotherapy, rehabilitation, and bracing is the first line of treatment. Mechanical bracing helps prevent further progression of the kyphotic deformity. Surgery is mostly indicated in patients with failure of conservative management, with neurologic compromise, and for cosmetic reasons.
Asunto(s)
Enfermedad de Scheuermann , Adolescente , Humanos , Niño , Enfermedad de Scheuermann/diagnóstico por imagen , Enfermedad de Scheuermann/terapia , Enfermedad de Scheuermann/complicaciones , Columna VertebralRESUMEN
AIMS/HYPOTHESIS: Individual variation in plasma N-glycosylation has mainly been studied in the context of diabetes complications, and its role in type 1 diabetes onset is largely unknown. Our aims were to undertake a detailed characterisation of the plasma and IgG N-glycomes in patients with recent onset type 1 diabetes, and to evaluate their discriminative potential in risk assessment. METHODS: In the first part of the study, plasma and IgG N-glycans were chromatographically analysed in a study population from the DanDiabKids registry, comprising 1917 children and adolescents (0.6-19.1 years) who were newly diagnosed with type 1 diabetes. A follow-up study compared the results for 188 of these participants with those for their 244 unaffected siblings. Correlation of N-glycan abundance with the levels and number of various autoantibodies (against IA-2, GAD, ZnT8R, ZnT8W), as well as with sex and age at diagnosis, were estimated by using general linear modelling. A disease predictive model was built using logistic mixed-model elastic net regression, and evaluated using a 10-fold cross-validation. RESULTS: Our study showed that onset of type 1 diabetes was associated with an increase in the proportion of plasma and IgG high-mannose and bisecting GlcNAc structures, a decrease in monogalactosylation, and an increase in IgG disialylation. ZnT8R autoantibody levels were associated with higher IgG digalactosylated glycan with bisecting GlcNAc. Finally, an increase in the number of autoantibodies (which is a better predictor of progression to overt diabetes than the level of any individual antibody) was accompanied by a decrease in the proportions of some of the highly branched plasma N-glycans. Models including age, sex and N-glycans yielded notable discriminative power between children with type 1 diabetes and their healthy siblings, with AUCs of 0.915 and 0.869 for addition of plasma and IgG N-glycans, respectively. CONCLUSIONS/INTERPRETATION: We defined N-glycan changes accompanying onset of type 1 diabetes, and developed a predictive model based on N-glycan profiles that could have valuable potential in risk assessment. Increasing the power of tests to identify individuals at risk of disease development would be a considerable asset for type 1 diabetes prevention trials.
Asunto(s)
Diabetes Mellitus Tipo 1 , Adolescente , Autoanticuerpos , Niño , Estudios de Seguimiento , Glicosilación , Humanos , Inmunoglobulina G , PolisacáridosRESUMEN
Charles Thurstan Holland was the first radiologist in the world and also the founder of the first radiology department. In the early days, radiographs were used primarily in the musculoskeletal system. Holland contributed significantly to the understanding of musculoskeletal radiology as seen on radiographs, including the appearance of ossification centers and accessory ossicles. The small triangular metaphyseal fragment in Salter-Harris type 2 fractures is called the "Thurstan Holland fragment."
Asunto(s)
Radiología , Huesos , Extremidades , Humanos , Radiografía , RadiólogosRESUMEN
PURPOSE: To assess spinal stability in different physiological positions whilst weight-bearing. METHODS: A cone beam CT scanner (CBCT) was used to identify any abnormal motion in the spine in different physiological positions whilst weight-bearing. The lumbar spine was assessed in 6 different patients with a comfortable neutral standing position and standing flexion and extension images in selected patients. Seated, weight-bearing flexion and extension images of the cervical spine were obtained in a further patient. Clinical indications included stability assessment post-trauma, post-surgical fusion and back pain. The projection images were reconstructed using bone and soft tissue algorithms to give isotropic CT images which could be viewed as per conventional multi-detector CT images. The flexion and extension CBCT data were fused to give a representation of any spinal movement between the extremes of motion. RESULTS: The flexion and extension weight-bearing images gave anatomical detail of the spine. Detail of the surgical constructs was possible. Dynamic structural information about spinal alignment, facet joints, exit foramina and paraspinal musculature was possible. The effective dose from the neutral position was equal to that of supine, multi-detector CT. CONCLUSION: CBCT can be used to image the lumbar and cervical spine in physiological weight-bearing positions and at different extremes of spinal motion. This novel application of an existing technology can be used to aid surgical decision making to assess spinal stability and to investigate occult back and leg pain. Its use should be limited to specific clinical indications, given the relatively high radiation dose.
Asunto(s)
Vértebras Cervicales , Vértebras Lumbares , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Tomografía Computarizada de Haz Cónico , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Rango del Movimiento Articular , Soporte de PesoRESUMEN
AIMS/HYPOTHESIS: The incidence of type 1 diabetes is increasing more rapidly than can be explained by genetic drift. Viruses may play an important role in the disease, as they seem to activate the 2'-5'-linked oligoadenylate (2'-5'A) pathway of the innate antiviral immune system. Our aim was to investigate this possibility. METHODS: Innate antiviral immune pathways were searched for type 1 diabetes-associated polymorphisms using genome-wide association study data. SNPs within ±250kb flanking regions of the transcription start site of 64 genes were examined. These pathways were also investigated for type 1 diabetes-associated RNA expression profiles using laser-dissected islets from two to five tissue sections per donor from the Diabetes Virus Detection (DiViD) study and the network of Pancreatic Organ Donors (nPOD). RESULTS: We found 27 novel SNPs in genes nominally associated with type 1 diabetes. Three of those SNPs were located upstream of the 2'-5'A pathway, namely SNP rs4767000 (p = 1.03 × 10-9, OR 1.123), rs1034687 (p = 2.16 × 10-7, OR 0.869) and rs739744 (p = 1.03 × 10-9, OR 1.123). We also identified a large group of dysregulated islet genes in relation to type 1 diabetes, of which two were novel. The most aberrant genes were a group of IFN-stimulated genes. Of those, the following distinct pathways were targeted by the dysregulation (compared with the non-diabetic control group): OAS1 increased by 111% (p < 1.00 × 10-4, 95% CI -0.43, -0.15); MX1 increased by 142% (p < 1.00 × 10-4, 95% CI -0.52, -0.22); and ISG15 increased by 197% (p = 2.00 × 10-4, 95% CI -0.68, -0.18). CONCLUSIONS/INTERPRETATION: We identified a genetic predisposition in the 2'-5'A pathway that potentially contributes to dysregulation of the innate antiviral immune system in type 1 diabetes. This study describes a potential role for the 2'-5'A pathway and other components of the innate antiviral immune system in beta cell autoimmunity.
Asunto(s)
Nucleótidos de Adenina/genética , Diabetes Mellitus Tipo 1/genética , Regulación de la Expresión Génica/fisiología , Predisposición Genética a la Enfermedad , Inmunidad Innata/genética , Oligorribonucleótidos/genética , Polimorfismo de Nucleótido Simple/genética , Virosis/inmunología , Adulto , Antivirales/uso terapéutico , Diabetes Mellitus Tipo 1/virología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Virosis/tratamiento farmacológico , Adulto JovenRESUMEN
Tumors around the elbow are infrequent, and delayed diagnosis is a common theme because of the low incidence and lack of familiarity. However, just like any other site, the radiologic work-up of musculoskeletal tumors around the elbow remains the same, with plain films the first investigation in a patient with a suspected bone tumor and ultrasound the first modality to evaluate a soft tissue lump. The management of both bone and soft tissue tumors around the elbow is unique because of a large number of important structures in an anatomically confined space and little normal tissue to spare without severely compromising the joint's function. Many benign nonneoplastic entities can mimic bone and soft tissue tumors on imaging. It is important to keep the characteristic imaging appearance in mind while formulating a differential diagnosis to avoid an unnecessary additional work-up. This article reviews the most common benign and malignant bone and soft tissue tumors around the elbow, mimickers, imaging features, and current therapeutic concepts.
Asunto(s)
Neoplasias Óseas , Articulación del Codo , Neoplasias de los Tejidos Blandos , Neoplasias Óseas/diagnóstico por imagen , Huesos , Codo/diagnóstico por imagen , Articulación del Codo/diagnóstico por imagen , Humanos , Neoplasias de los Tejidos Blandos/diagnóstico por imagenRESUMEN
INTRODUCTION: Type 1 diabetes (T1D) is caused by the destruction of pancreatic islet beta cells resulting in total loss of insulin production. Recent studies have suggested that the destruction may be interrelated to plasma lipids. OBJECTIVES: Specific lipids have previously been shown to be decreased in children who develop T1D before four years of age. Disturbances of plasma lipids prior to clinical diagnosis of diabetes, if true, may provide a novel way to improve prediction, and monitor disease progression. METHODS: A lipidomic approach was utilized to analyze plasma from 67 healthy adolescent subjects (10-15 years of age) with or without islet autoantibodies but all with increased genetic risk for T1D. The study subjects were enrolled at birth in the Diabetes Prediction in Skåne (DiPiS) study and after 10-15 years of follow-up we performed the present cross-sectional analysis. HLA-DRB345, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1 genotypes were determined using next generation sequencing. Lipidomic profiles were determined using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Lipidomics data were analyzed according to genotype. RESULTS: Variation in levels of several specific phospholipid species were related to level of autoimmunity but not development of T1D. Five glycosylated ceramides were increased in insulin autoantibody (IAA) positive adolescent subjects compared to adolescent subjects without this autoantibody. Additionally, HLA genotypes seemed to influence levels of long chain triacylglycerol (TG). CONCLUSION: Lipidomic profiling of adolescent subjects in high risk of T1D may improve sub-phenotyping in this high risk population.
Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Lípidos/sangre , Adolescente , Autoanticuerpos/genética , Autoanticuerpos/inmunología , Autoinmunidad/inmunología , Niño , Estudios de Cohortes , Estudios Transversales , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Femenino , Genotipo , Humanos , Metabolismo de los Lípidos/fisiología , Lipidómica/métodos , Masculino , Suecia/epidemiologíaRESUMEN
A series of 1H-1,2,3-triazole/acylhydrazide-tethered tetrahydro-ß-carboline-4-aminoquinoline conjugates was synthesized with an aim to study their anti-plasmodial structure-activity relationship. The presence of 1H-1,2,3-triazole-core along with a flexible alkyl chain length on aminoquinoline core has favourable influence on the anti-plasmodial activity against Chloroquine-resistant W2 strain of P. falciparum while the introduction of hydrazine core not only diminished the activities but also resulted in increased cytotoxicity against mammalian Vero cells.
Asunto(s)
Aminoquinolinas/síntesis química , Hidrazinas/síntesis química , Humanos , Estructura Molecular , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Hepatitis B virus (HBV) infection is a major global health burden as chronic hepatitis B (CHB) is associated with the development of liver diseases including hepatocellular carcinoma (HCC). To gain insight into the mechanisms causing HBV-related HCC, we investigated the effects of HBV replication on global host cell gene expression using human HepG2 liver cells. By microarray analysis, we identified 54 differentially expressed genes in HBV-replicating HepG2 cells. One of the differentially-expressed genes was insulin-like growth factor binding protein 1 (IGFBP1) which was downregulated in HBV-replicating cells. Consistent with the gene expression data, IGFBP1 was suppressed at both the cellular and secreted protein levels in the presence of HBV replication. Transient transfection experiments with an inducible plasmid encoding the HBV X protein (HBx) revealed that HBx alone was sufficient to modulate IGFBP1 expression. Small interference RNA (siRNA)-mediated loss of function studies revealed that knockdown of IGFBP1 reduced apoptosis induced by either thapsigargin (TG) or staurosporine (STS). Treatment of cells with recombinant insulin-like growth factor 1 (IGF-1) decreased both TG- or STS-induced apoptosis. Interestingly, addition of recombinant IGFBP1 reversed the anti-apoptotic effect of IGF-1 on TG-induced, but not STS-induced, apoptosis. In conclusion, our results suggest an anti-apoptotic autocrine function of HBV-mediated downregulation of IGFBP1 in HepG2 cells. Such an effect may contribute to the development of HBV-mediated HCC by increasing pro-survival and anti-apoptotic IGF-1 effects.
Asunto(s)
Apoptosis/fisiología , Carcinoma Hepatocelular/virología , Células Hep G2/virología , Virus de la Hepatitis B/patogenicidad , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Regulación hacia Abajo , Hepatitis B/virología , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Transactivadores/metabolismo , Proteínas Reguladoras y Accesorias ViralesRESUMEN
Chlorpyrifos (CPF) has been considered as one of the most potent organophosphates and is linked to several neurological disorders. On the other hand, Quercetin is a vital plant flavanoid and has been reported to regulate a number of physiological processes in the central nervous system. The present study was conducted to investigate the protective potential of quercetin during chlorpyrifos induced neurotoxicity. Female Wistar rats weighing 150-200 g were divided into four different groups viz: Normal control, CPF treated (13.5 mg/kg.b.wt. every alternate day), Quercetin treated (50 mg/kg.b.wt./day) and combined CPF and quercetin-treated. All the treatments were carried out for a total duration of eight weeks. Chlorpyrifos treatment showed significant alterations in the cognitive behavior and motor activities of rats, which were appreciably improved upon simultaneous supplementation with quercetin. Further, CPF treatment caused a significant inhibition in the enzyme activities of acetylcholinesterase and choline acetyltransferase, but caused an increase in the levels of acetylcholine in the brain. Further, chlorpyrifos exposure significantly elevated the levels of lipid peroxidation and protein carbonyl contents as well as the activities of catalase, superoxide dismutase, which were interestingly found to be decreased following co-treatment with quercetin. In contrast, CPF treatment decreased the activities of glutathione reductase, transferase, as well as levels of reduced and total glutathione in both the cerebrum and cerebellum but co-administration of quercetin, increased these levels. Chlorpyrifos treatment altered the neuro-histoarchitecture, which showed improvement upon quercetin supplementation. Hence, this study suggests that quercetin can be used as a prophylactic intervention to prevent CPF induced neurotoxicity.
Asunto(s)
Encéfalo/efectos de los fármacos , Cloropirifos/toxicidad , Fármacos Neuroprotectores/farmacología , Neurotoxinas/toxicidad , Quercetina/farmacología , Acetilcolina/análisis , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Química Encefálica/efectos de los fármacos , Catalasa/metabolismo , Cloropirifos/antagonistas & inhibidores , Colina O-Acetiltransferasa/metabolismo , Femenino , Peroxidación de Lípido/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Neurotoxinas/antagonistas & inhibidores , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismoRESUMEN
AIMS/HYPOTHESIS: Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. METHODS: We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. RESULTS: We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. CONCLUSIONS/INTERPRETATION: These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. DATA AVAILABILITY: The RNA expression data is available online at https://www.dropbox.com/s/93mk5tzl5fdyo6b/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%2C%20RNA%20expression.xlsx?dl=0 . A list of SNPs identified is available at https://www.dropbox.com/s/yfojma9xanpp2ju/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%20SNP.xlsx?dl=0 .
Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Adulto , Animales , Autoinmunidad , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/prevención & control , Modelos Animales de Enfermedad , Femenino , Fenofibrato/farmacología , Regulación Enzimológica de la Expresión Génica , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/ultraestructura , Metabolismo de los Lípidos/genética , Activación de Linfocitos , Masculino , Ratones Endogámicos NOD , Polimorfismo Genético , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
BACKGROUND: Long non-coding RNAs (lncRNAs) are a sub-class within non-coding RNA repertoire that have emerged as crucial regulators of the gene expression in various pathophysiological conditions. lncRNAs display remarkable versatility and wield their functions through interactions with RNA, DNA, or proteins. Accumulating body of evidence based on multitude studies has highlighted the role of lncRNAs in many autoimmune and inflammatory diseases, including type 1 diabetes (T1D). This review highlights emerging roles of lncRNAs in immune and islet ß cell function as well as some of the challenges and opportunities in understanding the pathogenesis of T1D and its complications. CONCLUSION: We accentuate that the lncRNAs within T1D-loci regions in consort with regulatory variants and enhancer clusters orchestrate the chromatin remodeling in ß cells and thereby act as cis/trans-regulatory determinants of islet cell transcriptional programs.
Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , ARN Largo no Codificante/genética , Animales , Ensamble y Desensamble de Cromatina , Humanos , Células Secretoras de Insulina/patologíaRESUMEN
AIM: The present study was designed to investigate the effect of mercurius solubilis (merc sol) on scopolamine induced memory deficits and motor coordination in mice. MATERIALS AND METHODS: Three different formulations of merc sol (30X, 200M, 1M) were screened for their in vitro antioxidant potential through DPPH (2, 2-diphenyl-1-picrylhydrazyl) and nitric oxide scavenging activity using response surface methodology. Memory impairment was induced by the administration of scopolamine (1mg/kg i.p.) for 3 days to mice and assessment of memory acquisition and retention was done using Morris water maze test, passive avoidance test, elevated plus maze test, light and dark box test, motor coordination was evaluated using rotarod test and inclined plan test. The involvement of ion channels and nitric oxide pathway in the observed effect of merc sol was elucidated by administration of veratrine (0.125 µg/kg, i.p.), A23187 (20 µg/kg, i.p.), L- arginine (40 mg/kg, i.p.), aminoguanidine (50 mg/kg, i.p.) 30 min prior to merc sol. Acute toxicity studies were performed in accordance with the OECD (Organisation for Economic Co-operation and Development) guidelines. RESULTS: In vitro studies have revealed merc sol 30 X to have maximum free radical and nitric oxide scavenging activity. Administration of merc sol 30 X to mice significantly reduced scopolamine induced memory deficits and motor incoordination in all the performance tasks. The calcium ionophore, A23187 significantly altered the effect of merc sol in mice. No major signs of toxicity were observed. CONCLUSION: Merc sol has antiamnesic effect in scopolamine induced deficits and motor coordination in mice.
Asunto(s)
Trastornos de la Memoria/tratamiento farmacológico , Mercurio/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Trastornos Psicomotores/tratamiento farmacológico , Análisis de Varianza , Animales , Arginina/uso terapéutico , Reacción de Prevención/efectos de los fármacos , Compuestos de Bifenilo/farmacología , Calcimicina/uso terapéutico , Antagonistas Colinérgicos/toxicidad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/uso terapéutico , Femenino , Guanidinas/uso terapéutico , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Ratones , Picratos/farmacología , Trastornos Psicomotores/inducido químicamente , Escopolamina/toxicidadRESUMEN
BACKGROUND: Reports of multi-walled carbon nanotubes (MWCNTs) incorporated into plants have indicated better yield and productivity, yet the phenomena need in-depth understanding especially when agricultural crops are tested. We primed wheat seeds with MWCNTs to understand the effects on germination, growth, anatomy, physiology and yield. RESULT: This study, carried out in field conditions, is a step forward over the previous reports. Early germination, excessive root hair, denser stomata and larger root length result in faster growth and higher yield of wheat plants. Denser root hair facilitated the uptake of both water and essential minerals such as phosphorus (P) and potassium (K), which boosted the crop yield by significantly improving grain yield per plant from 1.53 to 2.5 g, a 63% increase. Increase in cell elongation by 80% was recorded, while xylem and phloem sizes dilated to almost 83% and 85% of control, thus enhancing their capacity to conduct water and nutrients. CONCLUSION: Augmented growth of MWCNT-primed wheat, enhancement in grain number, biomass, stomatal density, xylem-phloem size, epidermal cells, and water uptake is observed while finding no DNA damage. This opens up an entirely new aspect to using cost-effective nanomaterials (the MWCNTs were produced in-house) for enhancing the performance of crop plants. © 2017 Society of Chemical Industry.