Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(13): 9816-9847, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38497121

RESUMEN

This review article explores the fascinating realm of fluorescence using organochalcogen molecules, with a particular emphasis on tellurium (Te). The discussion encompasses the underlying mechanisms, structural motifs influencing fluorescence, and the applications of these intriguing phenomena. This review not only elucidates the current state of knowledge but also identifies avenues for future research, thereby serving as a valuable resource for researchers and enthusiasts in the field of fluorescence chemistry with a focus on Te-based molecules. By highlighting challenges and prospects, this review sparks a conversation on the transformative potential of Te-containing compounds across different fields, ranging from environmental solutions to healthcare and materials science applications. This review aims to provide a comprehensive understanding of the distinct fluorescence behaviors exhibited by Te-containing compounds, contributing valuable insights to the evolving landscape of chalcogen-based fluorescence research.

2.
Environ Res ; 252(Pt 3): 118894, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599449

RESUMEN

Microplastics, an invisible threat, are emerging as serious pollutants that continuously affect health by interrupting/contaminating the human cycle, mainly involving food, water, and air. Such serious scenarios raised the demand for developing efficient sensing systems to detect them at an early stage efficiently and selectively. In this direction, the proposed research reports an electrochemical hexamethylenetetramine (HMT) sensing utilizing a sensing platform fabricated using chitosan-magnesium oxide nanosheets (CHIT-MgO NS) nanocomposite. HMT is considered as a hazardous microplastic, which is used as an additive in plastic manufacturers and has been selected as a target analyte. To fabricate sensing electrodes, a facile co-precipitation technique was employed to synthesize MgO NS, which was further mixed with 1% CHIT solution to form a CHIT_MgO NS composite. Such prepared nanocomposite solution was then drop casted to an indium tin oxide (ITO) to fabricate CHIT_MgO NS/ITO sensing electrode to detect HMT electrochemically using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. To determine the limit of detection (LOD) and sensitivity, DPV was performed. The resulting calibrated curve for HMT, ranging from 0.5 µM to 4.0 µM, exhibited a sensitivity of 12.908 µA (µM)-1 cm-2 with a detection limit of 0.03 µM and a limit of quantitation (LOQ) of 0.10 µM. Further, the CHIT_MgO NS/ITO modified electrode was applied to analyze HMT in various real samples, including river water, drain water, packaged water, and tertiary processed food. The results demonstrated the method's high sensitivity and suggested its potential applications in the field of microplastic surveillance, with a focus on health management.


Asunto(s)
Quitosano , Técnicas Electroquímicas , Óxido de Magnesio , Microplásticos , Quitosano/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Microplásticos/análisis , Óxido de Magnesio/química , Óxido de Magnesio/análisis , Contaminantes Químicos del Agua/análisis , Nanoestructuras/química , Nanocompuestos/química , Límite de Detección , Monitoreo del Ambiente/métodos
3.
J Neurosci Res ; 101(6): 952-975, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36717481

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The hallmarks are the presence of Lewy bodies composed mainly of aggregated α-synuclein and immune activation and inflammation in the brain. The neurotropism of SARS-CoV-2 with induction of cytokine storm and neuroinflammation can contribute to the development of PD. Interestingly, overexpression of α-synuclein in PD patients may limit SARS-CoV-2 neuroinvasion and degeneration of dopaminergic neurons; however, on the other hand, this virus can speed up the α-synuclein aggregation. The review aims to discuss the potential link between COVID-19 and the risk of PD, highlighting the need for further studies to authenticate the potential association. We have also overviewed the influence of SARS-CoV-2 infection on the PD course and management. In this context, we presented the prospects for controlling the COVID-19 pandemic and related PD cases that, beyond global vaccination and novel anti-SARS-CoV-2 agents, may include the development of graphene-based nanoscale platforms offering antiviral and anti-amyloid strategies against PD.


Asunto(s)
COVID-19 , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/farmacología , Pandemias , SARS-CoV-2 , Neuronas Dopaminérgicas
4.
Environ Res ; 236(Pt 1): 116646, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481054

RESUMEN

The mutating SARS-CoV-2 necessitates gauging the role of airborne particulate matter in the COVID-19 outbreak for designing area-specific regulation modalities based on the environmental state-of-affair. To scheme the protocols, the hotspots of air pollutants such as PM2.5, PM10, NH3, NO, NO2, SO2, and and environmental factors including relative humidity (RH), and temperature, along with COVID-19 cases and mortality from January 2020 till December 2020 from 29 different ground monitoring stations spanning Delhi, are mapped. Spearman correlation coefficients show a positive relationship between SARS-COV-2 with particulate matter (PM2.5 with r > 0.36 and PM10 with r > 0.31 and p-value <0·001). Besides, SARS-COV-2 transmission showed a substantial correlation with NH3 (r = 0.41), NO2 (r = 0.36), and NO (r = 0.35) with a p-value <0.001, which is highly indicative of their role in SARS-CoV-2 transmission. These outcomes are associated with the source of PM and its constituent trace elements to understand their overtone with COVID-19. This strongly validates temporal and spatial variation in COVID-19 dependence on air pollutants as well as on environmental factors. Besides, the bottlenecks of missing latent data, monotonous dependence of variables, and the role air pollutants with secondary environmental variables are discussed. The analysis set the foundation for strategizing regional-based modalities considering environmental variables (i.e., pollutant concentration, relative humidity, temperature) as well as urban and transportation planning for efficient control and handling of future public health emergencies.

5.
Environ Res ; 229: 115933, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37080272

RESUMEN

Metal/metal oxide nano systems (M-NSs) of tunable and manipulative properties are emerging suitable for cancer management via immunity development, early-stage diagnosis, nanotherapeutics, and targeted drug delivery systems. However, noticeable toxicity, off-targeted actions, lacking biocompatibility, and being expensive limit their acceptability. Moreover, involving high energy (top-down routes) and hazardous chemicals (bottom-up chemical routes) is altering human cycle. To manage such challenges, biomass (plants, microbes, animals) and green chemistry-based M-NSs due to scalability, affordability, are cellular, tissue, and organ acceptability are emerging as desired biogenic M-NSs for cancer management with enhanced features. The state-of-art and perspective of green metal/metal oxide nano systems (GM-NSs) as an efficient anti-cancer agent including, imaging, immunity building elements, site-specific drug delivery, and therapeutics developments are highlighted in this review critically. It is expected that this report will serve as guideline for design and develop high-performance GM-NSs for establishing them as next-generation anti-cancer agent capable to manage cancer in personalized manner.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias , Animales , Humanos , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Metales , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Óxidos , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
6.
Ecotoxicol Environ Saf ; 264: 115487, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729804

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted human-to-human via aerosols and air-borne droplets. Therefore, capturing and destroying viruses from indoor premises are essential to reduce the probability of human exposure and virus transmission. While the heating, ventilation, and air conditioning (HVAC) systems help in reducing the indoor viral load, a targeted approach is required to effectively remove SARS-CoV-2 from indoor air to address human exposure concerns. The present study demonstrates efficient trapping and destruction of SARS-CoV-2 via nano-enabled filter technology using the UV-A-stimulated photoelectrochemical oxidation (PECO) process. Aerosols containing SARS-CoV-2 were generated by nebulization inside an air-controlled test chamber where an air purifier (Air Mini+) was placed. The study demonstrated the efficient removal of SARS-CoV-2 (99.98 %) from the test chamber in less than two minutes and PECO-assisted destruction (over 99%) on the filtration media in 1 h. Furthermore, in a real-world scenario, the Molekule Air-Pro air purifier removed SARS-CoV-2 (a negative RT-qPCR result post-running the filter device) from the circulating air in a COVID-19 testing facility. Overall, the ability of two FDA-approved class II medical devices, Molekule Air-Mini+ and Air-Pro air purifiers, to remove and destroy SARS-CoV-2 in indoor settings was successfully demonstrated. The study indicates that as the "tripledemic" of COVID-19, influenza, and respiratory syncytial virus (RSV) overwhelm the healthcare facilities in the USA, the use of a portable air filtration device will help contain the spread of the viruses in close door facilities, such as in schools and daycare facilities.


Asunto(s)
Filtros de Aire , Contaminación del Aire Interior , COVID-19 , Humanos , SARS-CoV-2 , Prueba de COVID-19 , Aerosoles y Gotitas Respiratorias , Contaminación del Aire Interior/prevención & control
7.
Crit Rev Biotechnol ; 42(8): 1180-1212, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34823433

RESUMEN

Neurodegenerative disorders (NDs) are highly prevalent among the aging population. It affects primarily the central nervous system (CNS) but the effects are also observed in the peripheral nervous system. Neural degeneration is a progressive loss of structure and function of neurons, which may ultimately involve cell death. Such patients suffer from debilitating memory loss and altered motor coordination which bring up non-affordable and unavoidable socio-economic burdens. Due to the unavailability of specific therapeutics and diagnostics, the necessity to control or manage NDs raised the demand to investigate and develop efficient alternative approaches. Keeping trends and advancements in view, this report describes both state-of-the-art and challenges in nano-biotechnology-based approaches to manage NDs, toward personalized healthcare management. Sincere efforts are being made to customize nano-theragnostics to control: therapeutic cargo packaging, delivery to the brain, nanomedicine of higher efficacy, deep brain stimulation, implanted stimulation, and managing brain cell functioning. These advancements are useful to design future therapy based on the severity of the patient's neurodegenerative disease. However, we observe a lack of knowledge shared among scientists of a variety of expertise to explore this multi-disciplinary research field for NDs management. Consequently, this review will provide a guideline platform that will be useful in developing novel smart nano-therapies by considering the aspects and advantages of nano-biotechnology to manage NDs in a personalized manner. Nano-biotechnology-based approaches have been proposed as effective and affordable alternatives at the clinical level due to recent advancements in nanotechnology-assisted theragnostics, targeted delivery, higher efficacy, and minimal side effects.


Asunto(s)
Nanopartículas , Enfermedades Neurodegenerativas , Anciano , Humanos , Sistemas de Liberación de Medicamentos , Nanomedicina , Nanopartículas/química , Nanotecnología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo
8.
Anal Biochem ; 659: 114925, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36181866

RESUMEN

Urease is an enzyme of historical importance in the field of biochemistry, generally microbial and plant urease is the primary sources of urease. The significant applications of urease enzyme are found to be foremost in food industry, medical equipment's and biosensors. In this work, urease has been extracted from Jack bean meal using ammonium sulphate and acetone precipitation. A significant amount of urease was precipitated and concentrated at 60% saturated solution of ammonium sulphate. The obtained precipitates were dissolved in 50 mM phosphate buffer (pH 8) after centrifugation, and subjected to sodium dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to determine the molecular weight of urease. Results obtained from the SDS-PAGE were validated using Zymography. Anion exchange chromatography was used to separate the desired protein at different pH (7.0, 7.5 and 8.0). The eluted fractions were assessed for urease activity using phenol-nitroprusside dependent ammonia release assay. Under these assay conditions, one unit of urease activity was calibrated as the amount of enzyme liberating 1 µM of NH3 from urea per unit time. The eluted fraction and Zymography analysis show the purified urease observed at 90 kDa and activity of purified urease, respectively. The obtained results for specific activity (173.67Units mg) and % purification (99.71%) for urease has been compared with the available literature, which are found to be in close relation with existing results. The proposed method is a novel approach which has recorded highest % purification and specific activity. Furthermore, it can be suitable for extracting urease from jack bean source for various industrial applications.


Asunto(s)
Plantas , Ureasa , Ureasa/química , Sulfato de Amonio , Electroforesis en Gel de Poliacrilamida , Plantas/metabolismo , Urea
9.
Ann Hematol ; 101(9): 1887-1895, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35802164

RESUMEN

COVID-19 is a global pandemic triggered by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 entry point involves the interaction with angiotensin-converting enzyme 2 (ACE2) receptor, CD147, and erythrocyte Band3 protein. Hemolytic anemia has been linked to COVID-19 through induction of autoimmune hemolytic anemia (AIHA) caused by the formation of autoantibodies (auto-Abs) or directly through CD147 or erythrocyte Band3 protein-mediated erythrocyte injury. Here, we aim to provide a comprehensive view of the potential mechanisms contributing to hemolytic anemia during the SARS-CoV-2 infection. Taken together, data discussed here highlight that SARS-CoV-2 infection may lead to hemolytic anemia directly through cytopathic injury or indirectly through induction of auto-Abs. Thus, as SARS-CoV-2-induced hemolytic anemia is increasingly associated with COVID-19, early detection and management of this condition may prevent the poor prognostic outcomes in COVID-19 patients. Moreover, since hemolytic exacerbations may occur upon medicines for COVID-19 treatment and anti-SARS-CoV-2 vaccination, continued monitoring for complications is also required. Given that, intelligent nanosystems offer tools for broad-spectrum testing and early diagnosis of the infection, even at point-of-care sites.


Asunto(s)
Anemia Hemolítica , Tratamiento Farmacológico de COVID-19 , COVID-19 , Anemia Hemolítica/etiología , COVID-19/complicaciones , Humanos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2
10.
Pharm Res ; 39(11): 2831-2855, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35552983

RESUMEN

PURPOSE: Respiratory disorders pose a major threat to the morbidity and mortality to public health. Here we reviewed the nanotechnology based pulmonary drug delivery using metered dose inhalers. METHODS: Major respiratory diseases such as chronic obstructive pulmonary diseases (COPD), asthma, acute lower respiratory tract infections, tuberculosis (TB) and lung cancer. At present, common treatments for respiratory disorders include surgery, radiation, immunotherapy, and chemotherapy or a combination. The major challenge is development of systemic delivery of the chemotherapeutic agents to the respiratory system. Conventional delivery of chemotherapy has various limitation and adverse side effected. Hence, targeted, and systemic delivery need to be developed. Towards this direction nanotechnology, based controlled, targeted, and systemic drug delivery systems are potential candidate to enhance therapeutic efficacy with minimum side effect. Among different route of administration, pulmonary delivery has unique benefits such as circumvents first pass hepatic metabolism and reduces dose and side effects. RESULTS: Respiratory disorders pose a major threat to the morbidity and mortality to public health globally. Pulmonary delivery can be achieved through various drug delivery devices such as nebulizers, dry powder inhalers, and metered dose inhalers. Among them, metered dose inhalers are the most interesting and first choice of clinician over others. This review focused on nanotechnology based pulmonary drug delivery using metered dose inhalers. This report focused on delivery of various types of therapeutics using nanocarriers such as polymeric nanoparticles and micelles, dendrimers, lipid nanocarriers such as liposomes, solid lipid nanostructures and nanostructured lipid carriers, and other using metered dose inhalers discussed comprehensively. This report provides insight about the effect of parameters of MDI such as co-solvent, propellants, actuators shape, nozzle diameters, and jet lengths, and respiratory flow rate, and particle size of co-suspension of drug on aerodynamics and lung deposition of formulation. This review also provided the insight about various metered dose inhalers market scenario and digital metered dose inhalers. CONCLUSION: This report concluded the clinical potential of metered dose inhalers, summary of current progress and future perspectives towards the smart digital metered dose inhalers development.


Asunto(s)
Inhaladores de Dosis Medida , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Administración por Inhalación , Nebulizadores y Vaporizadores , Pulmón , Inhaladores de Polvo Seco , Sistemas de Liberación de Medicamentos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Nanotecnología , Lípidos/farmacología
11.
Phys Chem Chem Phys ; 24(32): 19164-19176, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35943087

RESUMEN

The development of efficient electrochemical sensors of exceptional features, molecularly imprinted polymers (MIPs), has been extensively utilized due to their great vitality as an alternative to bio-recognition elements. MIPs as an artificial bio-recognition element are getting significant attention due to their affordability, easy processability, and scaling-up capabilities. However, the challenge of longer stability and higher sensitivity associated with MIP-based sensing technology is still a remaining challenge. This can be addressed by modifying MIPs with electro-active nano-systems. Correspondingly, MXene is an emerging material of choice to make MIP-based sensing platforms more efficient and develop a bio-active-free sensing system. This review highlights state-of-the-art MXene-modified MIP electrochemical sensing platforms to overcome the associated limitations of pristine MIPs. As a proof-of-concept, the sensitive and selective detection of markers for health monitoring can be efficiently fulfilled by the high-performance MXene-MIP nanocomposite-based electrochemical sensor. Moreover, the challenges associated with this research area along with the potential solutions are also discussed. An attempt has been made to explore MXene-MIP nanocomposites as a next-generation sensing platform suitable for point-of-care testing (POCT) applications.


Asunto(s)
Impresión Molecular , Nanocompuestos , Polímeros Impresos Molecularmente , Polímeros
12.
Arch Pharm (Weinheim) ; 355(10): e2200188, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35672257

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is linked with inflammatory disorders and the development of oxidative stress in extreme cases. Therefore, anti-inflammatory and antioxidant drugs may alleviate these complications. Ginkgo biloba L. folium extract (EGb) is a herbal medicine containing various active constituents. This review aims to provide a critical discussion on the potential role of EGb in the management of coronavirus disease 2019 (COVID-19). The antiviral effect of EGb is mediated by different mechanisms, including blocking SARS-CoV-2 3-chymotrypsin-like protease that provides trans-variant effectiveness. Moreover, EGb impedes the development of pulmonary inflammatory disorders through the diminution of neutrophil elastase activity, the release of proinflammatory cytokines, platelet aggregation, and thrombosis. Thus, EGb can attenuate the acute lung injury and acute respiratory distress syndrome in COVID-19. In conclusion, EGb offers the potential of being used as adjuvant antiviral and symptomatic therapy. Nanosystems enabling targeted delivery, personalization, and booster of effects provide the opportunity for the use of EGb in modern phytotherapy.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ginkgo biloba , Antioxidantes/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Quimasas , Citocinas , Humanos , Elastasa de Leucocito , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , SARS-CoV-2 , Relación Estructura-Actividad
13.
Nanotechnology ; 32(50)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34371491

RESUMEN

The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.

14.
Cancer Metastasis Rev ; 42(3): 593-595, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37798549
15.
Sensors (Basel) ; 19(20)2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623064

RESUMEN

Waterborne diseases that originated due to pathogen microorganisms are emerging as a serious global health concern. Therefore, rapid, accurate, and specific detection of these microorganisms (i.e., bacteria, viruses, protozoa, and parasitic pathogens) in water resources has become a requirement of water quality assessment. Significant research has been conducted to develop rapid, efficient, scalable, and affordable sensing techniques to detect biological contaminants. State-of-the-art technology-assisted smart sensors have improved features (high sensitivity and very low detection limit) and can perform in a real-time manner. However, there is still a need to promote this area of research, keeping global aspects and demand in mind. Keeping this view, this article was designed carefully and critically to explore sensing technologies developed for the detection of biological contaminants. Advancements using paper-based assays, microfluidic platforms, and lateral flow devices are discussed in this report. The emerging recent trends, mainly point-of-care (POC) technologies, of water safety analysis are also discussed here, along with challenges and future prospective applications of these smart sensing technologies for water health diagnostics.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Biosensibles , Virus/aislamiento & purificación , Enfermedades Transmitidas por el Agua/diagnóstico , Bacterias/patogenicidad , Humanos , Sistemas de Atención de Punto , Virus/patogenicidad , Agua , Microbiología del Agua , Enfermedades Transmitidas por el Agua/microbiología , Enfermedades Transmitidas por el Agua/virología
16.
Sensors (Basel) ; 19(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357409

RESUMEN

The authors wish to make the following correction to the above-mentioned published paper [...].

17.
Sensors (Basel) ; 19(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925837

RESUMEN

Epilepsy is a serious neurological disorder which affects every aspect of patients' life, including added socio-economic burden. Unfortunately, only a few suppressive medicines are available, and a complete cure for the disease has not been found yet. Excluding the effectiveness of available therapies, the timely detection and monitoring of epilepsy are of utmost priority for early remediation and prevention. Inability to detect underlying epileptic signatures at early stage causes serious damage to the central nervous system (CNS) and irreversible detrimental variations in the organ system. Therefore, development of a multi-task solving novel smart biosensing systems is urgently required. The present review highlights advancements in state-of-art biosensing technology investigated for epilepsy diseases diagnostics and progression monitoring or both together. State of art epilepsy biosensors are composed of nano-enabled smart sensing platform integrated with micro/electronics and display. These diagnostics systems provide bio-information needed to understand disease progression and therapy optimization timely. The associated challenges related to the development of an efficient epilepsy biosensor and vision considering future prospects are also discussed in this report. This review will serve as a guide platform to scholars for understanding and planning of future research aiming to develop a smart bio-sensing system to detect and monitor epilepsy for point-of-care (PoC) applications.

18.
Artículo en Inglés | MEDLINE | ID: mdl-29967017

RESUMEN

Zika virus (ZIKV) infection is associated with serious, long-term neurological manifestations. There are currently no approved therapies for the treatment or prevention of ZIKV infection. Favipiravir (FAV) is a viral polymerase inhibitor with broad-spectrum activity. Our prior studies used static FAV concentrations and demonstrated promising activity. However, the anti-ZIKV activity of dynamic FAV concentrations has never been evaluated in a human cell line. Here we employed the hollow-fiber infection model (HFIM) to simulate the human pharmacokinetic (PK) profiles associated with the clinically utilized FAV dosage regimens against influenza and Ebola viruses and assessed the viral burden profiles. Clinically achievable FAV concentrations inhibited ZIKV replication in HUH-7 cells in a dose-dependent fashion (50% effective concentration = 236.5 µM). The viral burden profiles under dynamic FAV concentrations were predicted by use of a mechanism-based mathematical model (MBM) and subsequently successfully validated in the HFIM. This validated, translational MBM can now be used to predict the anti-ZIKV activity of other FAV dosage regimens in the presence of between-patient variability in pharmacokinetics. This approach can be extended to rationally optimize FAV combination dosage regimens which hold promise to treat ZIKV infections in nonpregnant patients.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Pirazinas/farmacología , Replicación Viral/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Amidas/farmacocinética , Animales , Antivirales/farmacocinética , Línea Celular , Chlorocebus aethiops , Humanos , Modelos Teóricos , Pirazinas/farmacocinética , Células Vero , Carga Viral/efectos de los fármacos , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismo
19.
Sensors (Basel) ; 18(12)2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30563249

RESUMEN

Improved health management is a key to provide a better health care [...].


Asunto(s)
Técnicas Biosensibles/instrumentación , Sistemas de Atención de Punto , Técnicas Electroquímicas , Humanos , Hidrocortisona/análisis
20.
J Neurovirol ; 23(4): 603-614, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28762183

RESUMEN

Drug abuse (e.g., methamphetamine-Meth or cocaine-Coc) is one of the major risk factors for becoming infected with HIV-1, and studies show that in combination, drug abuse and HIV-1 lead to significantly greater damage to CNS. To overcome these issues, we have developed a novel nanoformulation (NF) for drug-abusing population infected with HIV-1. In this work, a novel approach was developed for the co-encapsulation of Nelfinavir (Nel) and Rimcazole (Rico) using layer-by-layer (LbL) assembled magnetic nanoformulation for the cure of neuroAIDS. Developed NF was evaluated for blood-brain barrier (BBB) transmigration, cell uptake, cytotoxicity and efficacy (p24 assay) in HIV-1 infected primary astrocyte (HA) in presence or absence of Coc and Meth. Developed magnetic nanoformulation (NF) fabricated using the LbL approach exhibited higher amounts of drug loading (Nel and Rico) with 100% release of both the therapeutic agents in a sustained manner for 8 days. NF efficacy studies indicated a dose-dependent decrease in p24 levels in HIV-1-infected HA (~55%) compared to Coc + Meth treated (~50%). The results showed that Rico significantly subdued the effect of drugs of abuse on HIV infectivity. NF successfully transmigrated (38.8 ± 6.5%) across in vitro BBB model on the application of an external magnetic field and showed >90% of cell viability with efficient cell uptake. In conclusion, our proof of concept study revealed that sustained and concurrent release of sigma σ1 antagonist and anti-HIV drug from the developed novel sustained release NF can overcome the exacerbated effects of drugs of abuse in HIV infection and may solve the issue of medication adherence in the drug-abusing HIV-1 infected population.


Asunto(s)
Carbazoles/farmacocinética , Cocaína/farmacocinética , Preparaciones de Acción Retardada/farmacocinética , Drogas Ilícitas/farmacocinética , Metanfetamina/farmacocinética , Nelfinavir/farmacocinética , Complejo SIDA Demencia/tratamiento farmacológico , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Cocaína/química , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Inhibidores de la Proteasa del VIH/farmacocinética , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , Humanos , Drogas Ilícitas/química , Imanes/química , Metanfetamina/química , Nanoestructuras/química , Fármacos Neuroprotectores/farmacocinética , Cultivo Primario de Células , Abuso de Sustancias por Vía Intravenosa/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA