Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Zoolog Sci ; 41(1): 60-67, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38587518

RESUMEN

Ovarian follicle development is an essential process for continuation of sexually reproductive animals, and is controlled by a wide variety of regulatory factors such as neuropeptides and peptide hormones in the endocrine, neuroendocrine, and nervous systems. Moreover, while some molecular mechanisms underlying follicle development are conserved, others vary among species. Consequently, follicle development processes are closely related to the evolution and diversity of species. Ciona intestinalis type A (Ciona rubusta) is a cosmopolitan species of ascidians, which are the closest relative of vertebrates. However, unlike vertebrates, ascidians are not endowed with the hypothalamus-pituitary-gonadal axis involving pituitary gonadotropins and sexual steroids. Combined with the phylogenetic position of ascidians as the closest relative of vertebrates, such morphological and endocrine features suggest that ascidians possess both common and species-specific regulatory mechanisms in follicle development. To date, several neuropeptides have been shown to participate in the growth of vitellogenic follicles, oocyte maturation of postvitellogenic follicles, and ovulation of fully mature follicles in a developmental stage-specific fashion. Furthermore, recent studies have shed light on the evolutionary processes of follicle development throughout chordates. In this review, we provide an overview of the neuropeptidergic molecular mechanism in the premature follicle growth, oocyte maturation, and ovulation in Ciona, and comparative views of the follicle development processes of mammals and teleosts.


Asunto(s)
Ciona intestinalis , Neuropéptidos , Animales , Femenino , Filogenia , Ovulación , Folículo Ovárico , Mamíferos
2.
Gen Comp Endocrinol ; 357: 114594, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047798

RESUMEN

In recent years, new concepts have emerged regarding the nomenclature, functions, and relationships of different peptide families of the gonadotropin-releasing hormone (GnRH) superfamily. One of the main driving forces for this originated from the emerging evidence that neuropeptides previously called molluscan GnRH are multifunctional and should be classified as corazonin (CRZ). However, research articles still appear that use incorrect nomenclature and attribute the same function to molluscan CRZs as vertebrate GnRHs. The aim of the present study was to further support the recent interpretation of the origin and function of the GnRH superfamily. Towards this goal, we report the characterization of CRZ signaling system in the molluscan model species, the great pond snail (Lymnaea stagnalis). We detected a CRZ-receptor-like sequence (Lym-CRZR) by homology-searching in the Lymnaea transcriptomes and the deduced amino acid sequence showed high sequence similarity to GnRH receptors and CRZ receptors. Molecular phylogenetic tree analysis demonstrated that Lym-CRZR is included in the cluster of molluscan CRZRs. Lym-CRZR transiently transfected into HEK293 cells was found to be localized at the plasma membrane, confirming that it functions as a membrane receptor, like other G protein-coupled receptors. The signaling assays revealed that the previously identified Lym-CRZ neuropeptide stimulated intracellular Ca2+ mobilization in a dose-dependent manner, but not cyclic AMP production, in HEK293 cells transfected with Lym-CRZR. Finally, we demonstrated a wide tissue distribution of Lym-CRZR. These results suggest that Lym-CRZ is a multifunctional peptide and provide further insights into the evolution of the GnRH neuropeptide superfamily. The present study also supports the notion that previously termed molluscan "GnRH" should be classified as "CRZ".

3.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396656

RESUMEN

A wide variety of bioactive peptides have been identified in the central nervous system and several peripheral tissues in the ascidian Ciona intestinalis type A (Ciona robusta). However, hemocyte endocrine peptides have yet to be explored. Here, we report a novel 14-amino-acid peptide, CiEMa, that is predominant in the granular hemocytes and unilocular refractile granulocytes of Ciona. RNA-seq and qRT-PCR revealed the high CiEma expression in the adult pharynx and stomach. Immunohistochemistry further revealed the highly concentrated CiEMa in the hemolymph of the pharynx and epithelial cells of the stomach, suggesting biological roles in the immune response. Notably, bacterial lipopolysaccharide stimulation of isolated hemocytes for 1-4 h resulted in 1.9- to 2.4-fold increased CiEMa secretion. Furthermore, CiEMa-stimulated pharynx exhibited mRNA upregulation of the growth factor (Fgf3/7/10/22), vanadium binding proteins (CiVanabin1 and CiVanabin3), and forkhead and homeobox transcription factors (Foxl2, Hox3, and Dbx) but not antimicrobial peptides (CrPap-a and CrMam-a) or immune-related genes (Tgfbtun3, Tnfa, and Il17-2). Collectively, these results suggest that CiEMa plays roles in signal transduction involving tissue development or repair in the immune response, rather than in the direct regulation of immune response genes. The present study identified a novel Ciona hemocyte peptide, CiEMa, which paves the way for research on the biological roles of hemocyte peptides in chordates.


Asunto(s)
Ciona intestinalis , Animales , Ciona intestinalis/genética , Hemocitos/metabolismo , Péptidos/metabolismo , Faringe , Inmunidad
4.
Gen Comp Endocrinol ; 328: 114107, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973586

RESUMEN

In starfish, a relaxin-like gonad-stimulating peptide (RGP) is the gonadotropin responsible for final gamete maturation. RGP comprises two different peptides, A- and B-chains with two interchain and one intrachain disulfide bonds. The existence of two isomers of RGP in the crown-of-thorns starfish, Acanthaster planci, has been reported previously, but it was recently shown that A. planci represents a species complex with four different species. Here we elucidated the authentic sequence of the Pacific species, Acanthaster cf. solaris, RGP (Aso-RGP). The Aso-RGP precursor encoded by a 354 base pair open reading frame was composed of 117 amino acids (aa). The amino acid identity of Aso-RGP to Patiria pectinifera RGP (Ppe-RGP) and Asterias amurensis RGP (Aam-RGP) was 74% and 60%, respectively. Synthetic Aso-RGP induced spawning of ovarian fragments from A. cf. solaris. Ppe-RGP and Aam-RGP also induced spawning by A. cf. solaris ovaries. In contrast, Ppe-RGP and Aso-RGP induced spawning by P. pectinifera ovaries, but Aam-RGP was inactive. Notably, anti-Ppe-RGP antibodies recognized Aso-RGP as well as Ppe-RGP. Localization of Aso-RGP was observed immunohistochemically using anti-Ppe-RGP antibodies, showing that Aso-RGP was mainly present in the radial nerve cords of A. cf. solaris. Aso-RGP was distributed not only in the epithelium of the ectoneural region but also in the neuropile of the ectoneural region. These results suggest that Aso-RGP is synthesized in the epithelium of the ectoneural region, then transferred to fibers in the neuropile of the ectoneural region in radial nerve cords.


Asunto(s)
Relaxina , Aminoácidos , Animales , Disulfuros/metabolismo , Gonadotropinas/metabolismo , Gónadas/metabolismo , Relaxina/metabolismo , Estrellas de Mar/metabolismo
5.
Mol Reprod Dev ; 88(1): 34-42, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33244845

RESUMEN

A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B-chain (21 aa), C-peptide (47 aa), and A-chain (24 aa). There are three putative processing sites (Lys-Arg) between the B-chain and C-peptide, between the C-peptide and A-chain, and within the C-peptide. This structural organization revealed that the mature AscRGP is composed of A- and B-chains with two interchain disulfide bonds and one intrachain disulfide bond. The C-terminal residues of the B-chain are Gln-Gly-Arg, which is a potential substrate for formation of an amidated C-terminal Gln residue. Non-amidated (AscRGP-GR) and amidated (AscRGP-NH2 ) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP-GR and AscRGP-NH2 induced oocyte maturation and ovulation in similar dose-dependent manners. This is the first report on a C-terminally amidated functional RGP. Collectively, these results suggest that AscRGP-GR and AscRGP-NH2 act as a natural gonadotropic hormone in A. scoparius.


Asunto(s)
Gonadotropinas/química , Gonadotropinas/metabolismo , Hormonas de Invertebrados/química , Hormonas de Invertebrados/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Oocitos/metabolismo , Ovario/metabolismo , Estrellas de Mar/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células Cultivadas , Femenino , Gonadotropinas/síntesis química , Gonadotropinas/farmacología , Hormonas de Invertebrados/síntesis química , Hormonas de Invertebrados/farmacología , Neuropéptidos/síntesis química , Neuropéptidos/farmacología , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos , Ovario/efectos de los fármacos , Ovulación/efectos de los fármacos , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nervio Radial/metabolismo , Estrellas de Mar/efectos de los fármacos , Estrellas de Mar/genética
6.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198405

RESUMEN

Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproduction via the hypothalamus-pituitary-gonad axis (HPG axis) in vertebrates. GnRHs and their receptors (GnRHRs) are also conserved in invertebrates lacking the HPG axis, indicating that invertebrate GnRHs do not serve as "gonadotropin-releasing factors" but, rather, function as neuropeptides that directly regulate target tissues. All vertebrate and urochordate GnRHs comprise 10 amino acids, whereas amphioxus, echinoderm, and protostome GnRH-like peptides are 11- or 12-residue peptides. Intracellular calcium mobilization is the major second messenger for GnRH signaling in cephalochordates, echinoderms, and protostomes, while urochordate GnRHRs also stimulate cAMP production pathways. Moreover, the ligand-specific modulation of signal transduction via heterodimerization between GnRHR paralogs indicates species-specific evolution in Ciona intestinalis. The characterization of authentic or putative invertebrate GnRHRs in various tissues and their in vitro and in vivo activities indicate that invertebrate GnRHs are responsible for the regulation of both reproductive and nonreproductive functions. In this review, we examine our current understanding of and perspectives on the primary sequences, tissue distribution of mRNA expression, signal transduction, and biological functions of invertebrate GnRHs and their receptors.


Asunto(s)
Hipotálamo/metabolismo , Invertebrados/metabolismo , Receptores LHRH/metabolismo , Animales , Evolución Biológica , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Ciona intestinalis , AMP Cíclico/metabolismo , Equinodermos , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Células HEK293 , Humanos , Ligandos , Masculino , Cadenas de Markov , Moluscos , Transducción de Señal , Distribución Tisular , Urocordados
7.
Cell Tissue Res ; 377(3): 293-308, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31079207

RESUMEN

The digestive system is responsible for nutrient intake and defense against pathogenic microbes. Thus, identification of regulatory factors for digestive functions and immune systems is a key step to the verification of the life cycle, homeostasis, survival strategy and evolutionary aspects of an organism. Over the past decade, there have been increasing reports on neuropeptides, their receptors, variable region-containing chitin-binding proteins (VCBPs) and Toll-like receptors (TLRs) in the ascidian, Ciona intestinalis. Mass spectrometry-based peptidomes and genome database-searching detected not only Ciona orthologs or prototypes of vertebrate peptides and their receptors, including cholecystokinin, gonadotropin-releasing hormones, tachykinin, calcitonin and vasopressin but also Ciona-specific neuropeptides including Ci-LFs and Ci-YFVs. The species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors has also been revealed. These findings shed light on the remarkable significance of ascidians in investigations of the evolution and diversification of the peptidergic systems in chordates. In the defensive systems of C. intestinalis, VCBPs and TLRs have been shown to play major roles in the recognition of exogenous microbes in the innate immune system. These findings indicate both common and species-specific functions of the innate immunity-related molecules between C. intestinalis and vertebrates. In this review article, we present recent advances in molecular and functional features and evolutionary aspects of major neuropeptides, their receptors, VCBPs and TLRs in C. intestinalis.


Asunto(s)
Ciona intestinalis , Sistema Digestivo , Neuropéptidos , Receptores de Péptidos , Receptores Toll-Like , Animales , Ciona intestinalis/inmunología , Ciona intestinalis/metabolismo , Sistema Digestivo/inmunología , Sistema Digestivo/metabolismo , Neuropéptidos/química , Neuropéptidos/genética , Filogenia , Receptores de Péptidos/química , Receptores de Péptidos/genética , Especificidad de la Especie , Receptores Toll-Like/química , Receptores Toll-Like/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-28614698

RESUMEN

The nucleotide sequence of a sardine preprocalcitonin precursor has been determined from their ultimobranchial glands in the present study. From our analysis of this sequence, we found that sardine procalcitonin was composed of procalcitonin amino-terminal cleavage peptide (N-proCT) (53 amino acids), CT (32 amino acids), and procalcitonin carboxyl-terminal cleavage peptide (C-proCT) (18 amino acids). As compared with C-proCT, N-proCT has been highly conserved among teleosts, reptiles, and birds, which suggests that N-proCT has some bioactivities. Therefore, both sardine N-proCT and sardine CT were synthesized, and their bioactivities for osteoblasts and osteoclasts were examined using our assay system with goldfish scales that consisted of osteoblasts and osteoclasts. As a result, sardine N-proCT (10-7M) activated osteoblastic marker enzyme activity, while sardine CT did not change. On the other hand, sardine CT (10-9 to 10-7M) suppressed osteoclastic marker enzyme activity, although sardine N-proCT did not influence enzyme activity. Furthermore, the mRNA expressions of osteoblastic markers such as type 1 collagen and osteocalcin were also promoted by sardine N-proCT (10-7M) treatment; however, sardine CT did not influence their expressions. The osteoblastic effects of N-proCT lack agreement. In the present study, we can evaluate exactly the action for osteoblasts because our scale assay system is very sensitive and it is a co-culture system for osteoblasts and osteoclasts with calcified bone matrix. Both CT and N-proCT seem to influence osteoblasts and osteoclasts and promote bone formation by different actions in teleosts.


Asunto(s)
Calcitonina/análogos & derivados , Calcitonina/farmacología , Osteoblastos/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Calcitonina/genética , Carpa Dorada , Filogenia , Homología de Secuencia de Aminoácido
9.
Gen Comp Endocrinol ; 227: 101-8, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26031189

RESUMEN

Ascidians are the closest phylogenetic neighbors to vertebrates and are believed to conserve the evolutionary origin in chordates of the endocrine, neuroendocrine, and nervous systems involving neuropeptides and peptide hormones. Ciona intestinalis harbors various homologs or prototypes of vertebrate neuropeptides and peptide hormones including gonadotropin-releasing hormones (GnRHs), tachykinins (TKs), and calcitonin, as well as Ciona-specific neuropeptides such as Ciona vasopressin, LF, and YFV/L peptides. Moreover, molecular and functional studies on Ciona tachykinin (Ci-TK) have revealed the novel molecular mechanism of inducing oocyte growth via up-regulation of vitellogenesis-associated protease activity, which is expected to be conserved in vertebrates. Furthermore, a series of studies on Ciona GnRH receptor paralogs have verified the species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors. These findings confirm the remarkable significance of ascidians in investigations of the evolutionary processes of the peptidergic systems in chordates, leading to the promising advance in the research on Ciona peptides in the next stage based on the recent development of emerging technologies including genome-editing techniques, peptidomics-based multi-color staining, machine-learning prediction, and next-generation sequencing. These technologies and bioinformatic integration of the resultant "multi-omics" data will provide unprecedented insights into the comprehensive understanding of molecular and functional regulatory mechanisms of the Ciona peptides, and will eventually enable the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of chordates.


Asunto(s)
Evolución Biológica , Ciona intestinalis/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal/fisiología , Animales , Oogénesis/fisiología , Filogenia , Regulación hacia Arriba , Vertebrados/metabolismo
10.
Front Endocrinol (Lausanne) ; 14: 1260600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842312

RESUMEN

Invertebrates lack hypothalamic-pituitary-gonadal axis, and have acquired species-specific regulatory systems for ovarian follicle development. Ascidians are marine invertebrates that are the phylogenetically closest living relatives to vertebrates, and we have thus far substantiated the molecular mechanisms underlying neuropeptidergic follicle development of the cosmopolitan species, Ciona intestinalis Type A. However, no ovarian factor has so far been identified in Ciona. In the present study, we identified a novel Ciona-specific peptide, termed PEP51, in the ovary. Immunohistochemical analysis demonstrated the specific expression of PEP51 in oocyte-associated accessory cells, test cells, of post-vitellogenic (stage III) follicles. Immunoelectron microscopy revealed that PEP51 was localized in the cytosol of test cells in early stage III follicles, which lack secretory granules. These results indicate that PEP51 acts as an intracellular factor within test cells rather than as a secretory peptide. Confocal laser microscopy verified that activation of caspase-3/7, the canonical apoptosis marker, was detected in most PEP51-positive test cells of early stage III. This colocalization of PEP51 and the apoptosis marker was consistent with immunoelectron microscopy observations demonstrating that a few normal (PEP51-negative) test cells reside in the aggregates of PEP51-positive apoptotic test cells of early stage III follicles. Furthermore, transfection of the PEP51 gene into COS-7 cells and HEK293MSR cells resulted in activation of caspase-3/7, providing evidence that PEP51 induces apoptotic signaling. Collectively, these results showed the existence of species-specific ovarian peptide-driven cell metabolism in Ciona follicle development. Consistent with the phylogenetic position of Ciona as the closest sister group of vertebrates, the present study sheds new light on the molecular and functional diversity of the regulatory systems of follicle development in the Chordata.


Asunto(s)
Ciona intestinalis , Animales , Femenino , Ciona intestinalis/genética , Filogenia , Caspasa 3/genética , Aminoácidos/metabolismo , Péptidos/metabolismo , Folículo Ovárico , Vertebrados
11.
Dev Biol ; 352(2): 202-14, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21237141

RESUMEN

Despite containing only approximately 330 cells, the central nervous system (CNS) of Ciona intestinalis larvae has an architecture that is similar to the vertebrate CNS. Although only vertebrates have a distinct hypothalamus-the source of numerous neurohormone peptides that play pivotal roles in the development, function, and maintenance of various neuronal and endocrine systems, it is suggested that the Ciona brain contains a region that corresponds to the vertebrate hypothalamus. To identify genes expressed in the brain, we isolated brain vesicles using transgenic embryos carrying Ci-ß-tubulin(promoter)::Kaede, which resulted in robust Kaede expression in the larval CNS. The associated transcriptome was investigated using microarray analysis. We identified 565 genes that were preferentially expressed in the larval brain. Among these genes, 11 encoded neurohormone peptides including such hypothalamic peptides as gonadotropin-releasing hormone and oxytocin/vasopressin. Six of the identified peptide genes had not been previously described. We also found that genes encoding receptors for some of the peptides were expressed in the brain. Interestingly, whole-mount in situ hybridization showed that most of the peptide genes were expressed in the ventral brain. This catalog of the genes expressed in the larval brain should help elucidate the evolution, development, and functioning of the chordate brain.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Ciona intestinalis/crecimiento & desarrollo , Ciona intestinalis/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Ciona intestinalis/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Hibridación in Situ , Hormonas de Invertebrados/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Datos de Secuencia Molecular , Neuropéptidos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropéptido/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Factores de Transcripción/genética , Vertebrados/crecimiento & desarrollo , Vertebrados/metabolismo
12.
Front Endocrinol (Lausanne) ; 13: 858885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321341

RESUMEN

Omics studies contribute to the elucidation of genomes and profiles of gene expression. In the ascidian Ciona intestinalis Type A (Ciona robusta), mass spectrometry (MS)-based peptidomic studies have detected numerous Ciona-specific (nonhomologous) neuropeptides as well as Ciona homologs of typical vertebrate neuropeptides and hypothalamic peptide hormones. Candidates for cognate G protein-coupled receptors (GPCRs) for these peptides have been found in the Ciona transcriptome by two ways. First, Ciona homologous GPCRs of vertebrate counterparts have been detected by sequence homology searches of cognate transcriptomes. Second, the transcriptome-derived GPCR candidates have been used for machine learning-based systematic prediction of interactions not only between Ciona homologous peptides and GPCRs but also between novel Ciona peptides and GPCRs. These data have ultimately led to experimental evidence for various Ciona peptide-GPCR interactions. Comparative transcriptomics between the wildtype and Ciona vasopressin (CiVP) gene-edited Ciona provide clues to the biological functions of CiVP in ovarian follicular development and whole body growth. Furthermore, the transcriptomes of follicles treated with peptides, such as Ciona tachykinin and cionin (a Ciona cholecystokinin homolog), have revealed key regulatory genes for Ciona follicle growth, maturation, and ovulation, eventually leading to the verification of essential and novel molecular mechanisms underlying these biological events. These findings indicate that omics studies, combined with artificial intelligence and single-cell technologies, pave the way for investigating in greater details the nervous, neuroendocrine, and endocrine systems of ascidians and the molecular and functional evolution and diversity of peptidergic regulatory networks throughout chordates.


Asunto(s)
Ciona intestinalis , Neuropéptidos , Hormonas Peptídicas , Animales , Inteligencia Artificial , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Femenino , Neuropéptidos/metabolismo , Hormonas Peptídicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/metabolismo
13.
Front Endocrinol (Lausanne) ; 12: 668564, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025581

RESUMEN

Oxytocin (OT) and vasopressin (VP) superfamily neuropeptides are distributed in not only vertebrates but also diverse invertebrates. However, no VPergic innervation of invertebrates has ever been documented. In the ascidian, Ciona intestinalis Type A (Ciona robusta), an OT/VP superfamily peptide was identified, and the Ciona vasopressin (CiVP) induces oocyte maturation and ovulation. In the present study, we characterize the innervation and phenotypes of genetically modified Ciona: CiVP promoter-Venus transgenic and CiVP mutants. CiVP promoter-Venus transgenic Ciona demonstrated that CiVP gene was highly expressed in the cerebral ganglion and several nerves. Fluorescence was also detected in the ovary of young CiVP promoter-Venus transgenic ascidians, suggesting that the CiVP gene is also expressed temporarily in the ovary of young ascidians. Furthermore, a marked decrease of post-vitellogenic (stage III) follicles was observed in the ovary of CiVP mutants, whereas pre-vitellogenic (stage I) and vitellogenic (stage II) follicles were increased in the mutant ovary, compared with that of wildtype Ciona. Gene expression profiles showed that the expression of various genes, including genes related to ovarian follicle growth, was altered in the ovary of CiVP mutants. Altogether, these results indicated that CiVP, mainly as a neuropeptide, plays pivotal roles in diverse biological functions, including growth of early-stage ovarian follicles via regulation of the expression of a wide variety of genes. This is the first report describing a VP gene promoter-transgenic and VP gene-edited invertebrate and also on its gene expression profiles and phenotypes.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Ciona intestinalis/metabolismo , Edición Génica , Ovario/inervación , Proteínas/metabolismo , Transcriptoma , Vasopresinas/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Ciona intestinalis/genética , Ciona intestinalis/crecimiento & desarrollo , Femenino , Perfilación de la Expresión Génica , Oogénesis , Ovulación , Fenotipo , Regiones Promotoras Genéticas , Proteínas/genética
14.
Zoolog Sci ; 27(2): 134-53, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20141419

RESUMEN

The critical phylogenetic position of ascidians leads to the presumption that neuropeptides and hormones in vertebrates are highly likely to be evolutionarily conserved in ascidians, and the cosmopolitan species Ciona intestinalis is expected to be an excellent deuterostome Invertebrate model for studies on neuropeptides and hormones. Nevertheless, molecular and functional characterization of Ciona neuropeptides and hormone peptides was restricted to a few peptides such as a cholecystokinin (CCK)/gastrin peptide, cionin, and gonadotropin-releasing hormones (GnRHs). In the past few years, mass spectrometric analyses and database searches have detected Ciona orthologs or prototypes of vertebrate peptides and their receptors, including tachykinin, insulin/relaxin, calcitonin, and vasopressin. Furthermore, studies have shown that several Ciona peptides, including vasopressin and a novel GnRH-related peptide, have acquired ascidian-specific molecular forms and/or biological functions. These findings provided indisputable evidence that ascidians, unlike other invertebrates (including the traditional protostome model animals), possess neuropeptides and hormone peptides structurally and functionally related to vertebrate counterparts, and that several peptides have uniquely diverged in ascidian evolutionary lineages. Moreover, recent functional analyses of Ciona tachykinin in the ovary substantiated the novel tachykininergic protease-assoclated oocyte growth pathway, which could not have been revealed in studies on vertebrates. These findings confirm the outstanding advantages of ascidians in understanding the neuroscience, endocrinology, and evolution of vertebrate neuropeptides and hormone peptides. This article provides an overview of basic findings and reviews new knowledge on ascidian neuropeptides and hormone peptides.


Asunto(s)
Ciona intestinalis/metabolismo , Neuropéptidos/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores de Péptidos/metabolismo , Animales , Evolución Molecular , Regulación de la Expresión Génica/fisiología
15.
Bio Protoc ; 10(7): e3577, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659547

RESUMEN

Ascidians are the closest living relatives of vertebrates ( Delsuc et al., 2006 ; Satoh et al., 2014 ) and are important for the evolutionary study of the ovarian follicle development including oocyte maturation and ovulation. However, neither the endogenous factors nor the molecular mechanisms underlying the oocyte maturation and ovulation had been elucidated mainly due to the lack of efficient procedure for isolating ovarian follicles. Here, we present the protocol for the effective fractionation and isolation of the ovarian follicle of Ciona intestinalis type A using stainless steel sieves with various particle size-meshes, and the simple incubation method of Ciona follicles for evaluating oocyte maturation and ovulation. Combined with the RNA-seq data from each fraction, the current methods lead us to investigate ovarian follicle development including oocyte maturation and ovulation in a stage-specific manner.

16.
Elife ; 82019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31573508

RESUMEN

Ascidians are the closest living relatives of vertebrates, and their study is important for understanding the evolutionary processes of oocyte maturation and ovulation. In this study, we first examined the ovulation of Ciona intestinalis Type A by monitoring follicle rupture in vitro, identifying a novel mechanism of neuropeptidergic regulation of oocyte maturation and ovulation. Ciona vasopressin family peptide (CiVP) directly upregulated the phosphorylation of extracellular signal-regulated kinase (CiErk1/2) via its receptor. CiVP ultimately activated a maturation-promoting factor, leading to oocyte maturation via germinal vesicle breakdown. CiErk1/2 also induced expression of matrix metalloproteinase (CiMMP2/9/13) in the oocyte, resulting in collagen degradation in the outer follicular cell layer and liberation of fertile oocytes from the ovary. This is the first demonstration of essential pathways regulating oocyte maturation and ovulation in ascidians and will facilitate investigations of the evolutionary process of peptidergic regulation of oocyte maturation and ovulation throughout the phylum Chordata.


Asunto(s)
Ciona intestinalis/fisiología , Oocitos/crecimiento & desarrollo , Ovulación , Animales , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas
17.
Front Neurosci ; 13: 1262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824255

RESUMEN

Tachykinins (TKs) are ancient neuropeptides present throughout the bilaterians and are, with some exceptions, characterized by a conserved FX1GX2Ramide carboxy terminus among protostomes and FXGLMamide in deuterostomes. The best-known TK is the vertebrate substance P, which in mammals, together with other TKs, has been implicated in health and disease with important roles in pain, inflammation, cancer, depressive disorder, immune system, gut function, hematopoiesis, sensory processing, and hormone regulation. The invertebrate TKs are also known to have multiple functions in the central nervous system and intestine and these have been investigated in more detail in the fly Drosophila and some other arthropods. Here, we review the protostome and deuterostome organization and evolution of TK precursors, peptides and their receptors, as well as their functions, which appear to be partly conserved across Bilateria. We also outline the distribution of TKs in the brains of representative organisms. In Drosophila, recent studies have revealed roles of TKs in early olfactory processing, neuromodulation in circuits controlling locomotion and food search, nociception, aggression, metabolic stress, and hormone release. TK signaling also regulates lipid metabolism in the Drosophila intestine. In crustaceans, TK is an important neuromodulator in rhythm-generating motor circuits in the stomatogastric nervous system and a presynaptic modulator of photoreceptor cells. Several additional functional roles of invertebrate TKs can be inferred from their distribution in various brain circuits. In addition, there are a few interesting cases where invertebrate TKs are injected into prey animals as vasodilators from salivary glands or paralyzing agents from venom glands. In these cases, the peptides are produced in the glands of the predator with sequences mimicking the prey TKs. Lastly, the TK-signaling system appears to have duplicated in Panarthropoda (comprising arthropods, onychophores, and tardigrades) to give rise to a novel type of peptides, natalisins, with a distinct receptor. The distribution and functions of natalisins are distinct from the TKs. In general, it appears that TKs are widely distributed and act in circuits at short range as neuromodulators or cotransmitters.

18.
Results Probl Cell Differ ; 68: 107-125, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31598854

RESUMEN

The critical phylogenetic position of the ascidian, Ciona intestinalis, as the closest relative of vertebrates, suggested its potential applicability as a model organism in a wide variety of biological events including the nervous, neuroendocrine, and endocrine regulation. To date, approximately 40 neuropeptides and/or peptide hormones and several cognate receptors have been identified. These peptides are categorized into two types: (1) orthologs of vertebrate peptides, such as cholecystokinin, GnRH, tachykinin, vasopressin, and calcitonin, and (2) novel family peptides such as LF peptides and YFL/V peptides. Ciona GnRH receptors (Ci-GnRHR) were found to be multiplicated in the Ciona-specific lineages and to form unique heterodimers between Ci-GnRHR1 and R4 and between Ci-GnRHR2 and R4, leading to fine-tuning of the generation of second messengers. Furthermore, Ciona tachykinin was shown to regulate a novel protease-associated follicle growth pathway. These findings will pave the way for the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of invertebrate deuterostomes and/or chordates. In this chapter, we provide an overview of primary sequences, functions, and evolutionary aspects of neuropeptides, peptide hormones, and their receptors in C. intestinalis.


Asunto(s)
Ciona intestinalis/metabolismo , Neuropéptidos/metabolismo , Hormonas Peptídicas/metabolismo , Receptores de Péptidos/metabolismo , Animales , Filogenia
19.
Artículo en Inglés | MEDLINE | ID: mdl-31474939

RESUMEN

Theca/interstitial cells are responsible for the growth and maturation of ovarian follicles. However, little is known about the theca/interstitial cell-specific genes and their functions. In this study, we explored transcriptomes of theca/interstitial cells by RNA-seq, and the novel biological roles of a theca cell marker, asporin (Aspn)/periodontal ligament-associated protein 1 (PLAP-1). RNA-seq detected 432 and 62 genes expressed specifically in theca/interstitial cells and granulosa cells isolated from 3-weeks old mouse ovaries. Gene ontology analysis demonstrated that these genes were largely categorized into four major groups: extracellular matrix organization-related terms, chemotaxis-related terms, the angiogenesis-related terms, and morphogenesis-related terms. In situ hybridization demonstrated that the newly detected representative gene, Aspn/PLAP-1, was detected specifically in the outer layer of theca cells in contrast with the expression of the basal lamina-specific gene, Nidgen-1. Intriguingly, an Aspn/PLAP-1 antibody completely arrested the growth of secondary follicles that is the gonadotropin-independent follicle developmental stage. Furthermore, transforming growth factor-ß (TGF-ß)-triggered signaling was induced by the Aspn/PLAP-1 antibody treatment, which is consistent with the inhibitory effect of Aspn/PLAP-1 on TGF-ß. Altogether, these results suggest that theca cells are classified into subpopulations on the basis of new marker genes and their biological functions, and provide evidence that Aspn/PLAP-1 is expressed exclusively in the outer layer of theca cells and plays a pivotal role in the growth of secondary follicles via downregulation of the canonical TGF-ß signaling cascade.

20.
Endocrinology ; 149(9): 4346-56, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18483149

RESUMEN

Tachykinins (TKs) and their receptors have been shown to be expressed in the mammalian ovary. However, the biological roles of ovarian TKs have yet to be verified. Ci-TK-I and Ci-TK-R, characterized from the protochordate (ascidian), Ciona intestinalis, are prototypes of vertebrate TKs and their receptors. In the present study, we show a novel biological function of TKs as an inducible factor for oocyte growth using C. intestinalis as a model organism. Immunostaining demonstrated the specific expression of Ci-TK-R in test cells residing in oocytes at the vitellogenic stage. DNA microarray and real-time PCR revealed that Ci-TK-I induced gene expression of several proteases, including cathepsin D, chymotrypsin, and carboxy-peptidase B1, in the ovary. The enzymatic activities of these proteases in the ovary were also shown to be enhanced by Ci-TK-I. Of particular significance is that the treatment of Ciona oocytes with Ci-TK-I resulted in progression of growth from the vitellogenic stage to the post-vitellogenic stage. The Ci-TK-I-induced oocyte growth was blocked by a TK antagonist or by protease inhibitors. These results led to the conclusion that Ci-TK-I enhances growth of the vitellogenic oocytes via up-regulation of gene expression and enzymatic activities of the proteases. This is the first clarification of the biological roles of TKs in the ovary and the underlying essential molecular mechanism. Furthermore, considering the phylogenetic position of ascidians as basal chordates, we suggest that the novel TK-regulated oocyte growth is an "evolutionary origin" of the tachykininergic functions in the ovary.


Asunto(s)
Evolución Biológica , Ciona intestinalis/fisiología , Oocitos/efectos de los fármacos , Ovario/efectos de los fármacos , Taquicininas/farmacología , Animales , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Modelos Biológicos , Oocitos/crecimiento & desarrollo , Oogénesis/efectos de los fármacos , Ovario/metabolismo , Ovario/fisiología , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Receptores de Taquicininas/genética , Receptores de Taquicininas/metabolismo , Receptores de Taquicininas/fisiología , Distribución Tisular , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA