RESUMEN
Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways. We provide biochemical and biophysical evidence that Smchd1-chromatin interactions are established through the homodimeric hinge domain of Smchd1 and, intriguingly, that the hinge domain also has the capacity to bind DNA and RNA. Our results suggest Smchd1 imparts epigenetic regulation via physical association with chromatin, which may antagonize Ctcf-facilitated chromatin interactions, resulting in coordinated transcriptional control.
Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Genoma , Animales , Sitios de Unión/genética , Western Blotting , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Factor de Unión a CCCTC , Células Cultivadas , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Histonas/metabolismo , Masculino , Metilación , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma/genéticaRESUMEN
Observations of inherited phenotypes that cannot be explained solely through genetic inheritance are increasing. Evidence points to transmission of non-DNA molecules in the gamete as mediators of the phenotypes. However, in most cases it is unclear what the molecules are, with DNA methylation, chromatin proteins, and small RNAs being the most prominent candidates. From a screen to generate novel mouse mutants of genes involved in epigenetic reprogramming, we produced a DNA methyltransferase 3b allele that is missing exon 13. Mice that are homozygous for the mutant allele have smaller stature and reduced viability, with particularly high levels of female post-natal death. Reduced DNA methylation was also detected at telocentric repeats and the X-linked Hprt gene. However, none of the abnormal phenotypes or DNA methylation changes worsened with multiple generations of homozygous mutant inbreeding. This suggests that in our model the abnormalities are reset each generation and the processes of transgenerational epigenetic reprogramming are effective in preventing their inheritance.
Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Ratones/genética , Alelos , Animales , Secuencia de Bases , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Epigénesis Genética , Exones , Femenino , Homocigoto , Masculino , Ratones/crecimiento & desarrollo , Ratones/metabolismo , Ratones Transgénicos , Datos de Secuencia Molecular , Linaje , ADN Metiltransferasa 3BRESUMEN
BACKGROUND: While it is now more than a decade since the first description of the gene mutation underlying the tumour predisposition syndrome multiple endocrine neoplasia type 1 (MEN1), the mechanism by which its protein product menin acts to prevent development of tumours is still poorly understood. METHODS: We undertook a genetic experiment to assess whether menin synergises with p53. Mice carrying various combinations of Men1 and Trp53 mutations were generated then survival and pathology assessed. RESULTS: While homozygous loss of Trp53 in mice resulted in early onset, aggressive tumours and profoundly reduced lifespan, heterozygous loss of either Trp53 or Men1 caused later onset disease, with a spectrum of tumours characteristic of each tumour suppressor gene. Loss of one copy of Men1 in animals also lacking both alleles of Trp53 did not exacerbate phenotype, based on survival, animal weight or sites of pathology, compared to Trp53 deletion alone. Dual heterozygous deletion of Men1 and Trp53 resulted in a small reduction in lifespan compared to the individual mutations, without new tumour sites. In the adrenal, we observed development of cortical tumours in dual heterozygous animals, as we have previously seen in Men1+/- animals, and there was loss of heterozygosity at the Men1 allele in these tumours. Median number of pathology observations per animal was increased in dual heterozygous animals compared with heterozygous loss of Trp53 alone. CONCLUSIONS: Simultaneous heterozygous deletion of Men1 in animals with either heterozygous or homozygous deletion of Trp53 did not result in formation of tumours at any new sites, implying additive rather than synergistic effects of these pathways. Mice that were Men1+/- in addition to Trp53+/- had tumours in endocrine as well as other sites, implying that increase in total tumour burden, at sites typically associated with either Men1 or Trp53 loss, contributed to the slight decrease in survival in Men1+/-: Trp53+/- animals in comparison with their littermates.
Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasia Endocrina Múltiple Tipo 1/genética , Proteína p53 Supresora de Tumor/genética , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Animales , Peso Corporal , Transformación Celular Neoplásica/metabolismo , Genotipo , Ratones , Ratones Noqueados , Neoplasia Endocrina Múltiple Tipo 1/metabolismo , Mutación , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/patología , Páncreas/metabolismo , Páncreas/patología , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Heterozygous disruption of the Men1 gene predisposes mice to the development of multiple endocrine tumors, accurately mimicking the human MEN1 cancer predisposition syndrome. Additionally, Men1(+/-) mice frequently develop sex cord adenomas. The mechanism underlying the susceptibility of these mice to sex cord tumor development has not been fully determined, but data suggest it may involve transcriptional regulation of key growth promoting/repressing genes. To identify potential menin-regulated genes that may be important for tumor suppression in sex cord cells, we compared the global gene expression profiles of testis and ovary adenomas with other endocrine tumors of the pancreas and pituitary from Men1 heterozygous mice and with control tissues. Gonadal tumors clustered separately from pancreas and pituitary tumors with only a few genes (e.g., Cdkn2c) commonly dysregulated in all tumor types. Testis and ovary tumors displayed a higher level of transcriptional similarity to each other than they did to their respective control tissues. Among genes that had decreased expression in tumors was significant over-representation of genes associated with the TGF-beta, hedgehog and Wnt signaling, indicating that loss of menin function affects these pathways at the level of transcription. Aberrant protein expression in Leydig and granulosa cells of 2 transcriptionally dysregulated gene products, Gata6 and Csf1r were confirmed by immunohistochemistry. We propose that sex cord tumor susceptibility in Men1(+/-) mice involves deregulated cell proliferation due to dysregulation of multiple cell growth regulating genes including: reduced Cdkn2c transcription, loss of TGF-beta pathway tumor suppressor function (e.g., Gata6) and transcriptional activation of Csf1r.
Asunto(s)
Factor de Transcripción GATA6/análisis , Perfilación de la Expresión Génica , Proteínas Proto-Oncogénicas/fisiología , Receptor de Factor Estimulante de Colonias de Macrófagos/análisis , Tumores de los Cordones Sexuales y Estroma de las Gónadas/etiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Animales , Análisis por Conglomerados , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/genéticaRESUMEN
An estimated 25%-40% of infertile men have idiopathic infertility associated with deficient sperm numbers and quality. Here, we identify the membrane-anchored serine protease PRSS21, also known as testisin, to be a novel proteolytic factor that directs epididymal sperm cell maturation and sperm-fertilizing ability. PRSS21-deficient spermatozoa show decreased motility, angulated and curled tails, fragile necks, and dramatically increased susceptibility to decapitation. These defects reflect aberrant maturation during passage through the epididymis, because histological and electron microscopic structural analyses showed an increased tendency for curled and detached tails as spermatozoa transit from the corpus to the cauda epididymis. Cauda epididymal spermatozoa deficient in PRSS21 fail to mount a swelling response when exposed to hypotonic conditions, suggesting an impaired ability to respond to osmotic challenges facing maturing spermatozoa in the female reproductive tract. These data suggest that aberrant regulation of PRSS21 may underlie certain secondary male infertility syndromes, such as "easily decapitated" spermatozoa in humans.
Asunto(s)
Fertilización/fisiología , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Maduración del Esperma/fisiología , Motilidad Espermática/fisiología , Espermatozoides/citología , Animales , Western Blotting , Recuento de Células , Forma de la Célula , Supervivencia Celular , Copulación/fisiología , Femenino , Fertilización In Vitro , Proteínas Ligadas a GPI , Humanos , Inmunohistoquímica , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Fosforilación , Serina Endopeptidasas/genética , Espermatozoides/metabolismo , Coloración y EtiquetadoRESUMEN
Eph receptor tyrosine kinases (RTKs) are a highly conserved family of signaling proteins with functions in cellular migration, adhesion, apoptosis, and proliferation during both adult and embryonic life. Here, we describe a knock-in mouse in which EphA1 expression is disrupted via the insertion of an internal ribosome entry site (IRES)-human placental alkaline phosphatase (ALPP) reporter cassette into exon II of the EphA1 gene. This was shown to successfully knockout expression of endogenous EphA1 and enforce expression of the ALPP reporter by the EphA1 promoter. Staining for the ALPP reporter protein demonstrated an epithelially restricted expression pattern in mouse tissues. In EphA1 null mice, two separate phenotypes were identified: abnormal tail development manifesting as a kinky tail was found in approximately 80% of homozygous adults. A second, distinct abnormality present in approximately 18% of females was characterized by imperforate uterovaginal development with hydrometrocolpos and caused by a resistance of cells to apoptosis during reproductive tract canalization. These results indicate a possible role for EphA1 in tissue patterning and hormone-induced apoptotic processes.
Asunto(s)
Genes Reporteros , Receptor EphA1/genética , Fosfatasa Alcalina , Animales , Apoptosis/genética , Tipificación del Cuerpo/genética , Efrina-A1/metabolismo , Femenino , Proteínas Ligadas a GPI , Técnicas de Sustitución del Gen , Humanos , Isoenzimas/genética , Masculino , Ratones , Ratones Noqueados , Receptor EphA1/fisiología , Cola (estructura animal)/anomalías , Cola (estructura animal)/citología , Cola (estructura animal)/enzimología , Útero/anomalías , Útero/citología , Útero/enzimología , Vagina/anomalías , Vagina/citología , Vagina/enzimologíaRESUMEN
The regulation of higher-order chromatin structure is complex and dynamic, and a full understanding of the suite of mechanisms governing this architecture is lacking. Here, we reveal the noncanonical SMC protein Smchd1 to be a novel regulator of long-range chromatin interactions in mice, and we add Smchd1 to the canon of epigenetic proteins required for Hox-gene regulation. The effect of losing Smchd1-dependent chromatin interactions has varying outcomes that depend on chromatin context. At autosomal targets transcriptionally sensitive to Smchd1 deletion, we found increased short-range interactions and ectopic enhancer activation. In contrast, the inactive X chromosome was transcriptionally refractive to Smchd1 ablation, despite chromosome-wide increases in short-range interactions. In the inactive X, we observed spreading of trimethylated histone H3 K27 (H3K27me3) domains into regions not normally decorated by this mark. Together, these data suggest that Smchd1 is able to insulate chromatin, thereby limiting access to other chromatin-modifying proteins.
Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Genes Homeobox , Familia de Multigenes , Cromosoma X , Animales , Proteínas Cromosómicas no Histona/genética , Elementos de Facilitación Genéticos , Eliminación de Gen , Silenciador del Gen , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
We and others have recently reported that the SMC protein Smchd1 is a regulator of chromosome conformation. Smchd1 is critical for the structure of the inactive X chromosome and at autosomal targets such as the Hox genes. However, it is unknown how Smchd1 is recruited to these sites. Here, we report that Smchd1 localizes to the inactive X via the Xist-HnrnpK-PRC1 (polycomb repressive complex 1) pathway. Contrary to previous reports, Smchd1 does not bind Xist or other RNA molecules with any specificity. Rather, the localization of Smchd1 to the inactive X is H2AK119ub dependent. Following perturbation of this interaction, Smchd1 is destabilized, which has consequences for gene silencing genome-wide. Our work adds Smchd1 to the PRC1 silencing pathway for X chromosome inactivation.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Complejo Represivo Polycomb 1/metabolismo , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X/genética , Animales , Secuencia de Bases , Diferenciación Celular , Femenino , Genoma , Histonas/metabolismo , Lisina/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Oligonucleótidos/metabolismo , Transporte de ProteínasRESUMEN
Vascular endothelial growth factors (VEGFs) play significant roles in endothelial growth, survival, and function, and their potential use as therapeutic agents to promote the revascularization of ischemic tissues in being avidly explored. VEGF-A has received most attention, as it is a potent stimulator of vascular growth. Results in clinical trials of VEGF-A as a therapeutic agent have fallen short of high expectations because of serious edematous side effects caused by its activity in promoting vascular permeability. VEGF-B, a related factor, binds some of the VEGF-A receptors but not to VEGF receptor 2, which is implicated in the vascular permeability promoting activity of VEGF-A. Despite little in vitro evidence to date for the ability of Vegf-B to directly promote angiogenesis, recent data indicate that it may promote postnatal vascular growth in mice, suggesting that it may have potential therapeutic application. We have specifically studied the effects of VEGF-B on vascular growth in vivo and on angiogenesis in vitro by analyzing transgenic mice in which individual isoforms (VEGFB167Tg and VEGFB186Tg) of VEGF-B are overexpressed in endothelial cells. VEGFB167Tg and VEGFB186Tg mice displayed enhanced vascular growth in the Matrigel assay in vivo and during cutaneous wound healing. In the aortic explant assay, explants from VEGFB167Tg and VEGFB186Tg mice displayed elevated vascular growth, suggesting a direct effect of VEGF-B isoforms in potentiating angiogenesis. These data support the use of VEGF-B as a therapeutic agent to promote vascular growth, in part, by potentiating angiogenesis. Furthermore, the lack of vascular permeability activity associated with either transgenic overexpression of the VEGF-B gene in endothelial cells or application of VEGF-B protein to the skin of mice in the Miles assay indicates that use of VEGF-B as a therapy should not be associated with edematous side effects.
Asunto(s)
Células Endoteliales/fisiología , Neovascularización Fisiológica , Factor B de Crecimiento Endotelial Vascular/fisiología , Animales , Anticuerpos Monoclonales/inmunología , Aorta/fisiología , Permeabilidad Capilar , Humanos , Ratones , Ratones Transgénicos , Células Madre/fisiología , Factor B de Crecimiento Endotelial Vascular/genética , Cicatrización de HeridasRESUMEN
Zellweger syndrome is the archetypical peroxisome biogenesis disorder and is characterized by defective import of proteins into the peroxisome, leading to peroxisomal metabolic dysfunction and widespread tissue pathology. In humans, mutations in the PEX13 gene, which encodes a peroxisomal membrane protein necessary for peroxisomal protein import, can lead to a Zellweger phenotype. To develop mouse models for this disorder, we have generated a targeted mouse with a loxP-modified Pex13 gene to enable conditional Cre recombinase-mediated inactivation of Pex13. In the studies reported here, we crossed these mice with transgenic mice that express Cre recombinase in all cells to generate progeny with ubiquitous disruption of Pex13. The mutant pups exhibited many of the clinical features of Zellweger syndrome patients, including intrauterine growth retardation, severe hypotonia, failure to feed, and neonatal death. These animals lacked morphologically intact peroxisomes and showed deficient import of matrix proteins containing either type 1 or type 2 targeting signals. Biochemical analyses of tissue and cultured skin fibroblasts from these animals indicated severe impairment of peroxisomal fatty acid oxidation and plasmalogen synthesis. The brains of these animals showed disordered lamination in the cerebral cortex, consistent with a neuronal migration defect. Thus, Pex13(-/-) mice reproduce many of the features of Zellweger syndrome and PEX13 deficiency in humans.
Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Peroxisomas/metabolismo , Síndrome de Zellweger/genética , Animales , Secuencia de Bases , Northern Blotting , Western Blotting , Movimiento Celular , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes , Hepatocitos/patología , Integrasas/metabolismo , Hígado/metabolismo , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Neuronas/metabolismo , Fenotipo , Plásmidos/metabolismo , Biosíntesis de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Proteínas Virales/metabolismoRESUMEN
Mutations of the MEN1 gene, encoding the tumor suppressor menin, predispose individuals to the cancer syndrome multiple endocrine neoplasia type 1, characterized by the development of tumors of the endocrine pancreas and anterior pituitary and parathyroid glands. We have targeted the murine Men1 gene by using Cre recombinase-loxP technology to develop both total and tissue-specific knockouts of the gene. Conditional homozygous inactivation of the Men1 gene in the pituitary gland and endocrine pancreas bypasses the embryonic lethality associated with a constitutional Men1(-/-) genotype and leads to beta-cell hyperplasia in less than 4 months and insulinomas and prolactinomas starting at 9 months. The pituitary gland and pancreas develop normally in the conditional absence of menin, but loss of this transcriptional cofactor is sufficient to cause beta-cell hyperplasia in some islets; however, such loss is not sufficient to initiate pituitary gland tumorigenesis, suggesting that additional genetic events are necessary for the latter.
Asunto(s)
Silenciador del Gen , Insulinoma , Neoplasia Endocrina Múltiple Tipo 1/metabolismo , Páncreas/crecimiento & desarrollo , Neoplasias Pancreáticas , Hipófisis/crecimiento & desarrollo , Neoplasias Hipofisarias , Prolactinoma , Animales , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Exones , Femenino , Hiperplasia/patología , Insulinoma/genética , Insulinoma/metabolismo , Insulinoma/patología , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasia Endocrina Múltiple Tipo 1/genética , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Hipófisis/metabolismo , Hipófisis/patología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Prolactinoma/genética , Prolactinoma/metabolismo , Prolactinoma/patología , Transgenes , Proteínas Virales/metabolismoRESUMEN
OBJECTIVE: To test the hypothesis that Vegf-B contributes to the pulmonary vascular remodelling, and the associated pulmonary hypertension, induced by exposure of mice to chronic hypoxia. METHODS: Right ventricular systolic pressure, the ratio of right ventricle/[left ventricle+septum] (RV/[LV+S]) and the thickness of the media (relative to vessel diameter) of intralobar pulmonary arteries (o.d. 50-150 and 151-420 microm) were determined in Vegfb knockout mice (Vegfb(-/-); n=17) and corresponding wild-type mice (Vegfb(+/+); n=17) exposed to chronic hypoxia (10% oxygen) or housed in room air (normoxia) for 4 weeks. RESULTS: In Vegfb(+/+) mice hypoxia caused (i) pulmonary hypertension (a 70% increase in right ventricular systolic pressure compared with normoxic Vegfb(+/+) mice; P<0.001), (ii) right ventricular hypertrophy (a 66% increase in RV/[LV+S]; P<0.001) and (iii) pulmonary vascular remodelling (a 27-36% increase in pulmonary arterial medial thickness; P<0.05). In contrast, in Vegfb(-/-) mice hypoxia did not cause any increase in either right ventricular systolic pressure or pulmonary arterial medial thickness; also right ventricular hypertrophy (41% increase in RV/[LV+S]; P<0.001) was less pronounced (P<0.05) than in Vegfb(+/+) mice. CONCLUSION: Vegf-B may have a role in the development of chronic hypoxic pulmonary hypertension in mice by contributing to pulmonary vascular remodelling. If so, the effect of Vegf-B appears to be different from that of Vegf-A which is reported to protect against, rather than contribute to, hypoxia-induced pulmonary vascular remodelling.
Asunto(s)
Factores de Crecimiento Endotelial/fisiología , Hipertensión Pulmonar/fisiopatología , Hipoxia/fisiopatología , Animales , Enfermedad Crónica , Femenino , Hematócrito , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/fisiopatología , Ratones , Ratones Noqueados , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Circulación Pulmonar , Túnica Media/patología , Factor B de Crecimiento Endotelial VascularRESUMEN
BACKGROUND: Smchd1 is an epigenetic modifier essential for X chromosome inactivation: female embryos lacking Smchd1 fail during midgestational development. Male mice are less affected by Smchd1-loss, with some (but not all) surviving to become fertile adults on the FVB/n genetic background. On other genetic backgrounds, all males lacking Smchd1 die perinatally. This suggests that, in addition to being critical for X inactivation, Smchd1 functions to control the expression of essential autosomal genes. RESULTS: Using genome-wide microarray expression profiling and RNA-seq, we have identified additional genes that fail X inactivation in female Smchd1 mutants and have identified autosomal genes in male mice where the normal expression pattern depends upon Smchd1. A subset of genes in the Snrpn imprinted gene cluster show an epigenetic signature and biallelic expression consistent with loss of imprinting in the absence of Smchd1. In addition, single nucleotide polymorphism analysis of expressed genes in the placenta shows that the Igf2r imprinted gene cluster is also disrupted, with Slc22a3 showing biallelic expression in the absence of Smchd1. In both cases, the disruption was not due to loss of the differential methylation that marks the imprint control region, but affected genes remote from this primary imprint controlling element. The clustered protocadherins (Pcdhα, Pcdhß, and Pcdhγ) also show altered expression levels, suggesting that their unique pattern of random combinatorial monoallelic expression might also be disrupted. CONCLUSIONS: Smchd1 has a role in the expression of several autosomal gene clusters that are subject to monoallelic expression, rather than being restricted to functioning uniquely in X inactivation. Our findings, combined with the recent report implicating heterozygous mutations of SMCHD1 as a causal factor in the digenically inherited muscular weakness syndrome facioscapulohumeral muscular dystrophy-2, highlight the potential importance of Smchd1 in the etiology of diverse human diseases.
RESUMEN
Using a Cre/loxP system, we have determined the phenotypic consequences attributable to in vivo deletion of both Rb1 and Trp53 in the mouse adrenal medulla. The coablation of these two tumor suppressor genes during embryogenesis did not disrupt adrenal gland development but resulted in the neoplastic transformation of the neural crest-derived adrenal medulla, yielding pheochromocytomas (PCCs) that developed with complete penetrance and were inevitably bilateral. Despite their typically benign status, these PCCs had profound ramifications on mouse vitality, with effected mice having a median survival of only 121 days. Evaluation of these PCCs by both immunohistochemistry and electron microscopy revealed that most Rb1(-/-):Trp53(-/-) chromaffin cells possessed atypical chromagenic vesicles that did not seem capable of appropriately storing synthesized catecholamines. The structural remodeling of the heart in mice harboring Rb1(-/-):Trp53(-/-) PCCs suggests that the mortality of these mice may be attributable to the inappropriate release of catecholamines from the mutated adrenal chromaffin cells. On the basis of the collective data from Rb1 and Trp53 knockout mouse models, it seems that the conversion of Rb1 loss-driven adrenal medulla hyperplasia to PCC can be greatly enhanced by the compound loss of Trp53, whereas the loss of Trp53 alone is generally ineffectual on adrenal chromaffin cell homeostasis. Consequently, the Trp53 tumor suppressor gene is an efficient genetic modifier of Rb1 loss in the development of PCC, and their compound loss in the adrenal medulla has a profound impact on both cellular homeostasis and animal vitality.
Asunto(s)
Neoplasias de las Glándulas Suprarrenales/patología , Genes p53/fisiología , Feocromocitoma/patología , Proteína de Retinoblastoma/fisiología , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/metabolismo , Animales , Catecolaminas/metabolismo , Femenino , Técnicas para Inmunoenzimas , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Feocromocitoma/genética , Feocromocitoma/metabolismo , Transgenes/fisiologíaRESUMEN
OBJECTIVES: To identify gene expression alterations associated with insulinoma formation and progression in 2 mouse models of multiple endocrine neoplasia type 1. METHODS: Mice were killed at 12 or 16 months, and pancreatic islets were isolated by enzymatic and physical disruption. Islets were separated by size representing control, normal, hyperplastic, and adenomous islets. RNA was isolated from these islets and profiled on Sentrix Mouse-6 Expression version 1 BeadChips. Array data were analyzed in GeneSpring. RESULTS: One hundred and one genes that were significantly (P ≤ 0.05) altered in hyperplastic islets and insulinomas compared with normal islets were identified. Of these, 64 gene elements showed reduced messenger RNA levels and 37 gene elements had increased gene expression compared with control islets. Altered expression of 3 genes, namely, Gata6, Tspan8, and s100a8, was confirmed by quantitative reverse transcription-polymerase chain reaction, and aberrant levels of Tspan8 and Lmo2 protein measured by Western blot correlated with the changes in messenger RNA levels. CONCLUSIONS: These results suggest that alterations in gene expression of Gata6, Tspan8, S100a8, and Lmo2 may act via novel pathways that play functionally important roles in Men1-associated tumor progression.
Asunto(s)
Perfilación de la Expresión Génica , Insulinoma/genética , Neoplasia Endocrina Múltiple Tipo 1/genética , Neoplasias Pancreáticas/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Western Blotting , Calgranulina A/genética , Calgranulina A/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Femenino , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Humanos , Insulinoma/etiología , Insulinoma/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Proteínas con Dominio LIM , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasia Endocrina Múltiple Tipo 1/complicaciones , Neoplasia Endocrina Múltiple Tipo 1/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , TetraspaninasRESUMEN
One X chromosome, selected at random, is silenced in each female mammalian cell. Xist encodes a noncoding RNA that influences the probability that the cis-linked X chromosome will be silenced. We found that the A-repeat, a highly conserved element within Xist, is required for the accumulation of spliced Xist RNA. In addition, the A-repeat is necessary for X-inactivation to occur randomly. In combination, our data suggest that normal Xist RNA processing is important in the regulation of random X-inactivation. We propose that modulation of Xist RNA processing may be part of the stochastic process that determines which X chromosome will be inactivated.
Asunto(s)
Proteínas Nucleares/metabolismo , Procesamiento Postranscripcional del ARN , ARN no Traducido/genética , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Inactivación del Cromosoma X/genética , Alelos , Animales , Secuencia de Bases , Cromosomas de los Mamíferos/metabolismo , Femenino , Células HeLa , Histonas/metabolismo , Humanos , Masculino , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Largo no Codificante , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/química , Eliminación de Secuencia/genética , Factores de Empalme Serina-ArgininaRESUMEN
There has been uncertainty regarding the precise role that the pocket protein Rb1 plays in murine melanocyte homeostasis. It has been reported that the TAT-Cre mediated loss of exon 19 from a floxed Rb1 allele causes melanocyte apoptosis in vivo and in vitro. This is at variance with other findings showing, either directly or indirectly, that Rb1 loss in melanocytes has no noticeable effect in vivo, but in vitro leads to a semi-transformed phenotype. In this study, we show that Rb1-null melanocytes lacking exon 19 do not undergo apoptosis and survive both in vitro and in vivo, irrespective of the developmental stage at which Cre-mediated ablation of the exon occurs. Further, Rb1 loss has no serious long-term ramifications on melanocyte homeostasis in vivo, with Rb1-null melanocytes being detected in the skin after numerous hair cycles, inferring that the melanocyte stem cell population carrying the Cre-mediated deletion is maintained. Consequently, whilst Rb1 loss in the melanocyte is able to alter cellular behaviour in vitro, it appears inconsequential with respect to melanocyte homeostasis in the mouse skin.
Asunto(s)
Cabello/metabolismo , Homeostasis , Melanocitos/metabolismo , Proteína de Retinoblastoma/deficiencia , Piel/metabolismo , Animales , Cabello/patología , Ratones , Ratones Noqueados , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Piel/patologíaRESUMEN
BACKGROUND: X chromosome inactivation, which silences gene expression from one of the two X chromosomes in females, is usually random. Skewed X inactivation has been implicated in both the expression and the suppression of X-linked disease phenotypes and has been reported to occur more frequently in breast and ovarian cancer patients, including BRCA1 or BRCA2 mutation carriers, than in control subjects. METHODS: We assessed the pattern of X chromosome inactivation using methylation-specific polymerase chain reaction amplification of the exon 1 microsatellite region of the X-linked androgen receptor (AR) gene in DNA from blood samples obtained from control subjects without a personal history of breast or ovarian cancer (n = 735), ovarian cancer patients (n = 313), familial breast cancer patients who did not carry mutations in BRCA1 or BRCA2 (n = 235), and affected and unaffected carriers of mutations in BRCA1 (n = 260) or BRCA2 (n = 63). We defined the pattern of X chromosome inactivation as skewed when the same X chromosome was active in at least 90% of cells. The association between skewed X inactivation and disease and/or BRCA mutation status was assessed by logistic regression analysis. The association between skewed X inactivation and age at cancer diagnosis was assessed by Cox proportional hazards regression analysis. All statistical tests were two-sided. RESULTS: The age-adjusted frequency of skewed X inactivation was not statistically significantly higher in ovarian cancer or familial breast cancer case subjects compared with control subjects. Skewed X inactivation was higher in BRCA1 mutation carriers than in control subjects (odds ratio [OR] = 2.7, 95% confidence interval [CI] = 1.1 to 6.2; P = .02), particularly among unaffected women (OR = 6.1, 95% CI = 1.5 to 31.8; P = .005). Among BRCA1 mutation carriers, those with skewed X inactivation were older at diagnosis of breast or ovarian cancer than those without skewed X inactivation (hazard ratio [HR] of breast or ovarian cancer = 0.37, 95% CI = 0.14 to 0.95; P = .04). Among BRCA2 mutation carriers, skewed X inactivation also occurred more frequently in unaffected carriers than in those diagnosed with breast or ovarian cancer (OR = 5.2, 95% CI = 0.5 to 28.9; P = .08) and was associated with delayed age at onset (HR = 0.59, 95% CI = 0.37 to 0.94; P = .03). CONCLUSIONS: Skewed X inactivation occurs at an increased frequency in BRCA1 (and possibly BRCA2) mutation carriers compared with control subjects and is associated with a statistically significant increase in age at diagnosis of breast and ovarian cancer.
Asunto(s)
Neoplasias de la Mama/genética , Cromosomas Humanos X , Genes BRCA1 , Mutación , Neoplasias Ováricas/genética , Receptores Androgénicos/genética , Inactivación del Cromosoma X , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Estudios de Casos y Controles , Metilación de ADN , Cartilla de ADN , ADN de Neoplasias/genética , Femenino , Genes BRCA2 , Genes Ligados a X , Predisposición Genética a la Enfermedad , Genotipo , Heterocigoto , Humanos , Estimación de Kaplan-Meier , Modelos Logísticos , Persona de Mediana Edad , Datos de Secuencia Molecular , Oportunidad Relativa , Reacción en Cadena de la Polimerasa/métodos , Modelos de Riesgos Proporcionales , Regulación hacia ArribaRESUMEN
X-chromosome inactivation is the mammalian dosage compensation mechanism by which transcription of X-linked genes is equalized between females and males. In an N-ethyl-N-nitrosourea (ENU) mutagenesis screen on mice for modifiers of epigenetic reprogramming, we identified the MommeD1 (modifier of murine metastable epialleles) mutation as a semidominant suppressor of variegation. MommeD1 shows homozygous female-specific mid-gestation lethality and hypomethylation of the X-linked gene Hprt1, suggestive of a defect in X inactivation. Here we report that the causative point mutation lies in a previously uncharacterized gene, Smchd1 (structural maintenance of chromosomes hinge domain containing 1). We find that SmcHD1 is not required for correct Xist expression, but localizes to the inactive X and has a role in the maintenance of X inactivation and the hypermethylation of CpG islands associated with the inactive X. This finding links a group of proteins normally associated with structural aspects of chromosome biology with epigenetic gene silencing.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Silenciador del Gen , Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/genética , Islas de CpG , Metilación de ADN , Fibroblastos/ultraestructura , Ratones , Mutación Puntual , ARN Largo no Codificante , ARN no Traducido/metabolismo , Cromosoma X/química , Cromosoma X/genéticaRESUMEN
Signaling events leading to Schwann cell tumor initiation have been extensively characterized in the context of neurofibromatosis (NF). Similar tumors are also observed in patients with the endocrine neoplasia syndrome Carney complex, which results from inactivating mutations in PRKAR1A. Loss of PRKAR1A causes enhanced protein kinase A activity, although the pathways leading to tumorigenesis are not well characterized. Tissue-specific ablation of Prkar1a in neural crest precursor cells (TEC3KO mice) causes schwannomas with nearly 80% penetrance by 10 months. These heterogeneous neoplasms were clinically characterized as genetically engineered mouse schwannomas, grades II and III. At the molecular level, analysis of the tumors revealed almost complete loss of both NF proteins, despite the fact that transcript levels were increased, implying posttranscriptional regulation. Although Erk and Akt signaling are typically enhanced in NF-associated tumors, we observed no activation of either of these pathways in TEC3KO tumors. Furthermore, the small G proteins Ras, Rac1, and RhoA are all known to be involved with NF signaling. In TEC3KO tumors, all three molecules showed modest increases in total protein, but only Rac1 showed significant activation. These data suggest that dysregulated protein kinase A activation causes tumorigenesis through pathways that overlap but are distinct from those described in NF tumorigenesis.