Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biochem Biophys Res Commun ; 709: 149852, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38574607

RESUMEN

BACKGROUND: Vitamin D3 (VD3) deficiency among children in Saudi Arabia remains a pressing concern due to its poor bioavailability and the limitations of current pediatric formulations. To address this challenge, we developed a groundbreaking pediatric self-nanoemulsifying drug delivery system (Bio-SNEDDS) for VD3, fortified with black seed oil and moringa seed oil for dual therapeutic benefits. Through meticulous formulation optimization using ternary phase diagrams and comprehensive testing, our Bio-SNEDDS demonstrated exceptional performance. METHODS: Bio-SNEDDS were manufactured by incorporating Black seed oil and moringa seed oil as bioactive nutraceutical excipients along with various cosurfactant and surfactants. Bio-SNEDDS were systematically optimized through ternary phase diagrams, visual tests, droplet size analysis, drug solubilization studies, dispersion assessments, and pharmacokinetic testing in rats compared to Vi-De 3®. RESULTS: Pseudoternary phase diagrams identified oil blends producing large nanoemulsion regions optimal for SNEDDS formation. The optimized F1 Bio-SNEDDS showed a mean droplet diameter of 33.7 nm, solubilized 154.46 mg/g VD3 with no metabolite formation, and maintained >88% VD3 in solution during 24 h dispersion testing. Notably, in vivo pharmacokinetic evaluation at a high VD3 dose demonstrated an approximately two-fold greater relative bioavailability over Vi-De 3®, validating the superb oral delivery performance of Bio-SNEDDS even under challenging high-dose conditions. CONCLUSIONS: The Bio-SNEDDS provides an effective VD3 delivery strategy with established in vivo superiority over marketed products, along with offering additional health benefits from the natural oils.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Ratas , Animales , Niño , Emulsiones , Solubilidad , Tensoactivos , Aceites de Plantas , Tamaño de la Partícula , Administración Oral , Disponibilidad Biológica
2.
Mol Pharm ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110837

RESUMEN

Transdermal microneedles have demonstrated promising potential as an alternative to typical drug administration routes for the treatment of various diseases. As microneedles offer lower administration burden with enhanced patient adherence and reduced ecological footprint, there is a need for further exploitation of microneedle devices. One of the main objectives of this work was to initially develop an innovative biobased photocurable resin with high biobased carbon content comprising isobornyl acrylate (IBA) and pentaerythritol tetraacrylate blends (50:50 wt/wt). The optimization of the printing and curing process resulted in µNe3dle arrays with durable mechanical properties and piercing capacity. Another objective of the work was to employ the 3D printed hollow µNe3dles for the treatment of osteoporosis in vivo. The 3D printed µNe3dle arrays were used to administer denosumab (Dmab), a monoclonal antibody, to osteoporotic mice, and the serum concentrations of critical bone minerals were monitored for six months to assess recovery. It was found that the Dmab administered by the 3D printed µNe3dles showed fast in vitro rates and induced an enhanced therapeutic effect in restoring bone-related minerals compared to subcutaneous injections. The findings of this study introduce a novel green approach with a low ecological footprint for 3D printing of biobased µNe3dles, which can be tailored to improve clinical outcomes and patient compliance for chronic diseases.

3.
Phys Chem Chem Phys ; 26(14): 10940-10950, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526327

RESUMEN

Herein, NiO nanoparticles (NPs) functionalized with a para-hexanitrocalix[6]arene derivative (p-HNC6/NiO) were synthesized by using a facile method and applied as a selective electrochemical sensor for the determination of bisphenol S (BPS) in real samples. Moreover, the functional interactions, phase purities, surface morphologies and elemental compositions of the synthesized p-HNC6/NiO NPs were investigated via advanced analytical tools, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Additionally, the synthesized p-HNC6/NiO NPs were cast on the surface of a bare glassy carbon electrode (GCE) via a drop casting method, which resulted in uniform deposition of p-HNC6/NiO/GCE over the surface of the GCE. Additionally, the developed p-HNC6/NiO/GCE sensor demonstrated an outstanding electrochemical response to BPS under optimized conditions, including a supporting electrolyte, a Briton-Robinson buffer electrolyte at pH 4, a scan rate of 110 mV s-1 and a potential window of between -0.2 and 1.0 V. The wide linear dynamic range was optimized to 0.8-70 µM to obtain a brilliant linear calibration curve for BPS. The limit of detection (LOD) and limit of quantification (LOQ) of the developed sensor were estimated to be 0.0059 and 0.019 µM, respectively, which are lower than those of reported sensors for BPS. The feasibility of the developed method was successfully assessed by analyzing the content of BPS in waste water samples, and good recoveries were achieved.

4.
Pak J Pharm Sci ; 37(2): 275-289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38767094

RESUMEN

The capsule is a major virulence factor for Streptococcus pneumoniae which causes global morbidity and mortality. It is already known that there are few conserved genes in the capsular biosynthesis pathway, which are common among all known serotypes, called CpsA, CpsB, CpsC and CpsD. Inhibiting capsular synthesis can render S. pneumoniae defenseless and vulnerable to phagocytosis. The Inhibitory potential of active Zingiber officinale compounds was investigated against the 3D (3-dimensional) structural products of Cps genes using in silico techniques. A 3D compound repository was created and screened for drug-likeness and the qualified compounds were used for molecular docking and dynamic simulation-based experiments using gallic acid for outcome comparison. Cavity-based docking revealed five different cavities in the CpsA, CpsB and CpsD proteins, with gallic acid and selected compounds of Zingiber in a binding affinity range of -6.8 to -8.8 kcal/mol. Gingerenone A, gingerenone B, isogingerenone B and gingerenone C showed the highest binding affinities for CpsA, CpsB and CpsD, respectively. Through the Molegro Virtual Docker re-docking strategy, the highest binding energies (-126.5 kcal/mol) were computed for CpsB with gingerenone A and CpsD with gingerenone B. These findings suggest that gingerenone A, B and C are potential inhibitors of S. pneumoniae-conserved capsule-synthesizing proteins.


Asunto(s)
Proteínas Bacterianas , Simulación del Acoplamiento Molecular , Streptococcus pneumoniae , Zingiber officinale , Zingiber officinale/química , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Simulación por Computador , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación de Dinámica Molecular , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Ácido Gálico/farmacología , Ácido Gálico/química
5.
Heliyon ; 10(8): e29460, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38665554

RESUMEN

This research aimed to enhance dermal delivery and optimize depigmentation therapy by designing mesoporous silica nanoparticles (MSNs) encapsulating azelaic acid (AZA) within a gel matrix. The MSNs were prepared using the sol-gel method. After subsequent processes, including acid extraction and drug loading, were then elucidated through PDI, size, zeta-potential, entrapment efficiency, nitrogen adsorption assay, FE-SEM, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, and tyrosinase inhibition assay, were employed to assess the formulation. In-vitro stability tests for both AZA-MSN gel (AZCG) and AZA-loaded mesoporous silica gel (AZMG) were conducted at 8 °C, 25 °C, 40 °C, and 40 °C + 75 % RH, encompassing assessments of color, liquefaction, pH, and conductivity. Our findings showed a notable entrapment efficiency of 93.46 % for AZA-MSNs, with FE-SEM illustrating porous spherical MSNs. The particle size of AZA-MSNs was determined to be 211.9 nm, with a pore size of 2.47 nm and XRD analysis confirmed the amorphous state of AZA within the MSN carriers. Rheology examination indicated a non-Newtonian flow, while ex-vivo rat skin permeation studies conducted in a phosphate buffer (pH = 5.5) demonstrated a biphasic release pattern with 85.53 % cumulative drug permeation for AZA-MSNs. Overall, the study endorse the potential of AZA-MSNs as an efficacious and stable formulation for AZA delivery, highlighting their promise in addressing pigmentation concerns compared to conventional approaches.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38910269

RESUMEN

BACKGROUND: Gastric cancer (GC) is a frequent malignant neoplasm found in China. Despite numerous therapeutic methodologies to ameliorate the well-being of GC patients, their efficiency remains inadequate. OBJECTIVE: Rosmanol (RML) is a phenolic diterpene compound with antioxidant and anticancer activities. In the current research, the apoptotic efficacy of RML on methylnitronitrosoguanidine (MNNG)-induced GC model was determined. MATERIALS AND METHODS: The rats were allocated into four sets, viz., normal control, MNNG (200 mg/kg bw) + NaCl, MNNG + RML (20 mg/kg), and RML (20 mg/kg) orally treated for 20 weeks. RESULTS: The results exposed that GC rats revealed higher (P<0.05) levels of TBARS and reduced antioxidant status in the stomach and liver tissues counter to other groups. In contrast, the TBARS level was substantially alleviated (P<0.05) and restored the antioxidant status in RMLadministered rats. Histopathologic assessment of gastric tissue unveiled that an MNNG-induced group presented squamous cell carcinoma with keratin pearls. The administration of RML reduced GC incidence, and only mild dysplasia was observed. Further, RML alleviated Bcl-2, P13K, AKT, and HMGB1, as evidenced by RT-PCR and Western blot analysis. CONCLUSION: Furthermore, RML triggered caspase-mediated mitochondrial apoptosis through the inactivation of the PI3K/AKT/HMGB1 pathway, eventually leading to GC cell death. This highlights that RML may be a potential natural antioxidant employed as a chemoprotective agent in GC rats.

8.
Front Mol Biosci ; 11: 1384214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38712342

RESUMEN

Background: Intrauterine growth restriction (IUGR) and preeclampsia (PE) are intricately linked with specific maternal health conditions, exhibit shared placental abnormalities, and play pivotal roles in precipitating preterm birth (PTB) incidences. However, the molecular mechanism underlying the association between PE and IUGR has not been determined. Therefore, we aimed to analyze the data of females with PE and those with PE + IUGR to identify the key gene(s), their molecular pathways, and potential therapeutic interactions. Methods: In this study, a comprehensive relationship analysis of both PE and PE + IUGR was conducted using RNA sequence datasets. Using two datasets (GSE148241 and GSE114691), differential gene expression analysis via DESeq2 through R-programming was performed. Gene set enrichment analysis was performed using ClusterProfiler, protein‒protein interaction (PPI) networks were constructed, and cluster analyses were conducted using String and MCODE in Cytoscape. Functional enrichment analyses of the resulting subnetworks were performed using ClueGO software. The hub genes were identified under both conditions using the CytoHubba method. Finally, the most common hub protein was docked against a library of bioactive flavonoids and PTB drugs using the PyRx AutoDock tool, followed by molecular dynamic (MD) simulation analysis. Pharmacokinetic analysis was performed to determine the ADMET properties of the compounds using pkCSM. Results: We identified eight hub genes highly expressed in the case of PE, namely, PTGS2, ENG, KIT, MME, CGA, GAPDH, GPX3, and P4HA1, and the network of the PE + IUGR gene set demonstrated that nine hub genes were overexpressed, namely, PTGS2, FGF7, FGF10, IL10, SPP1, MPO, THBS1, CYBB, and PF4. PTGS2 was the most common hub gene found under both conditions (PE and PEIUGR). Moreover, the greater (-9.1 kcal/mol) molecular binding of flavoxate to PTGS2 was found to have satisfactory pharmacokinetic properties compared with those of other compounds. The flavoxate-bound PTGS2 protein complex remained stable throughout the simulation; with a ligand fit to protein, i.e., a RMSD ranging from ∼2.0 to 4.0 Å and a RMSF ranging from ∼0.5 to 2.9 Å, was observed throughout the 100 ns analysis. Conclusion: The findings of this study may be useful for treating PE and IUGR in the management of PTB.

9.
RSC Adv ; 14(22): 15777-15790, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38752154

RESUMEN

In this study, chitosan, polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) were used to create ternary blends reinforced with organically modified montmorillonite nanoclay. Tramadol was used as a model drug to assess the efficacy of these ternary blends as drug delivery systems. The current work demonstrated the highly controlled release of tramadol via transdermal administration. The results of the FTIR investigation revealed the compatibility of the blending components. Among non-drug-loaded formulations, MC6 is the most stable with a 17.6% weight residue at 505 °C and MC11 is the most stable of all the drug-loaded and non-drug-loaded formulations with a weight residue of 22.0% at 505 °C. The XRD studies of the prepared formulations showed crystalline behavior. However, the SEM analysis revealed that no gaps or mixing components were uniformly dispersed in the nanocomposites. Pharmaceutical tests, such as swelling, dissolution, and permeation rates, revealed a strong influence of the PVA concentration. There was a uniform distribution of drug throughout the films with maximum encapsulation efficiency found for MC7 (96.09 ± 0.31) and minimum encapsulation efficiency for MC11 (90.56 ± 0.34)%. Compared to the sodium acetate (pH 4.5) and potassium phosphate buffers (pH 6.8) the swelling and erosion were higher in hydrochloric acid buffer (pH 1.2). An increase in PVA concentration (or decrease in PVP concentration) increases the swelling, dissolution, and permeation rates. In addition, erosion increased with increasing PVP concentration. Furthermore, the nanoclay-reinforced composite showed high permeation. Based on the obtained results, it can be concluded that the produced nanocomposite could be used as an efficient transdermal drug delivery system.

10.
Heliyon ; 10(15): e35069, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170221

RESUMEN

The utilization of phytoconstituents in skin care products has emerged as a notable trend due to their recognized safety and therapeutic efficacy. However, the challenge lies in improving the effective delivery of phytoconstituents to specific tissues, primarily attributed to their poor solubility and low permeability. This study endeavors to address this challenge by developing, optimizing and characterizing Cucumis melo var. agrestis (CME) extract loaded nanoemulsion gel (CME-NEG), aiming to enhance the skin permeability and antifungal activity. Herein, nanoemulsions encapsulating the plant extract were prepared using ultrasonication technique and were characterized for droplet size, zeta potential, polydispersity index (PDI) and entrapment efficiency. Further, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were conducted to characterize the optimized CME extract loaded nanoemulsion (CME-NE 3) formulation. The optimized formulation was blended with Carbopol 940 gel to develop CME-NEG, which was evaluated for release kinetics, in vitro permeation and in vitro antifungal activity. High performance liquid chromatography (HPLC) analysis confirmed the presence of gallic acid, chlorogenic acid, 4-Hydroxy benzoic acid (HB acid), kaempferol, caffeic acid and quercetin. Findings of 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that the ethanolic extract had highest antioxidant activity (88.88 %). The optimized formulation displayed smooth spherical nanodroplets with size of 175.5 ± 1.56 nm, zeta potential of -21.5 ± 0.12 mV, PDI of 0.192 ± 0.06, and highest entrapment efficiency (EE) of 91.35 ± 1.65 %. The release profile of CME-NE exhibited a controlled release characteristic and the release kinetic mechanism was best described by the Korsmeyer-Peppas (Kp) model. In a 24 h permeation study, it was observed that the in vitro permeation of CME-NEG was 58.63 %, significantly higher than that of CME extract loaded plain gel (CME-PG) with an enhancement ratio of 2.12. The prepared CME-NEG formulation also presented enhanced antifungal activity as compared to pure CME extract. In conclusion, the designed CME-NEG offers a promising topical drug delivery system with enhanced skin permeability and antifungal activity.

11.
ACS Omega ; 9(22): 23873-23891, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854529

RESUMEN

Carrageenan (CG) and ion exchange resins (IERs) are better metal chelators. Kappa (κ) CG and IERs were synthesized and subjected to copper ion (Cu2+) adsorption to obtain DMSCH/κ-Cu, DC20H/κ-Cu, and IRP69H/κ-Cu nanocomposites (NCs). The NCs were studied using statistical physics formalism (SPF) at 315-375 K and a multilayer perceptron with five input nodes. The percentage of Cu2+ uptake efficiency was used as an outcome variable. Via the grand canonical ensemble, SPF gives models for both monolayer and multilayer sorption layers. For in vitro anticoagulant activity (ACA), the activated partial thromboplastin time were calculated using 100 µL of rabbit plasma incubated at 37 °C. After 2 min, 100 L of 0.025 M CaCl2 was added, and the clotting time was recorded for each group (n = 6). The results demonstrated that the key covariables for the adsorption process were pH and concentration. The results of artificial neural network models were comparable with the experimental findings. The error rates varied between 4.3 and 1.0%. The prediction analysis results ranged from 43.6 to 89.2. The ΔG and ΔS values for IRP69H/κ-Cu obtained were -18.91 and -16.32 and 26.21 and 22.74 kJ/mol for the temperatures 315 and 345 K, respectively. Adsorbate species were perpendicular to the adsorbent surfaces, notwithstanding the apparent importance of macro- and micropore volumes. These adsorbents typically fluctuate with temperature changes and contain one or more layers of sorption. Negative and positive sorption energies correspond to endothermic and exothermic processes. The biosorption energy (E1 and E2) values in this experiment have a value of less than 23 kJ mol-1. Complex SPF models' energy distributions validate surface properties and interactions with adsorbates. At a concentration of 100 µg/mL, DC20H/κ-Cu2+ exhibited an ACA of only 8 s. These NCs demonstrated better greater ACA with the order DC20H/κ < DMSCH/κ < IRP69H/κ. More research is needed to rule out the chemical processes behind the ACA of CG/IER-Cu NCs.

12.
Pharmaceutics ; 16(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276522

RESUMEN

The journal retracts the article, "Poly (N-vinylcaprolactam-grafted-sodium alginate) Based Injectable pH/Thermo Responsive In Situ Forming Depot Hy-drogels for Prolonged Controlled Anticancer Drug Delivery; In Vitro, In Vivo Characterization and Toxicity Evaluation" [...].

13.
Plants (Basel) ; 13(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674476

RESUMEN

Herbal spices are an agricultural commodity, economically very important and beneficial in primary healthcare in the food and medicine sectors. Herbal spices are used as food flavoring agents as well as in phytotherapies throughout the world and have nutritive benefits. The food and medicine industries widely employ artificial or natural adulteration to retard the deterioration and utilization of these adulterants in food and medicine products has given rise to significant apprehension among consumers, primarily stemming from the potential health risks that they pose. Thus, their characterization for the purpose of identification, origin, and quality assurance is mandatory for safe human consumption. Here, we studied 22 samples of commonly traded herbal spices that belong to 20 different genera and 21 species comprising 14 families, investigated macroscopically or organoleptically as well as histologically under microscopic examination. In this study, we provide details on organoleptic features including appearance, taste, odor, color, shape, size, fractures, types of trichomes, and the presence of lenticels among the examined herbal spices and these features have great significance in the detection of both natural as well as artificial deterioration. In terms of microscopic characterization, each examined plant part comprising different anatomical characteristics has taxonomic importance and also provides useful information for authentication from natural adulterants. Furthermore, the studied taxa were also described with nutritive and therapeutic properties. For condiments, herbal beverages and medicinal purposes, different herbal parts such as leaves, floral buds, seeds, fruit, and accessory parts like mericarp, rhizome, bulbs, and bark were used and commercially traded. Similarly, in this study, the leaves of Cinnamomum tamala and Mentha spicata, the floral buds of Syzygium aromaticum, the seeds of Amomum subulatum, Brassica nigra, Punica granatum, Myristica fragrans, Phyllanthus emblica, and Elettaria cardamomum, the mericarp of Coriandrum sativum, and Cuminum cyminum were observed. As a result, we show the potential of herbal spices as a source of many valuable phytochemicals and essential nutrients for food, nutraceutical, and homoeopathic medicine.

14.
ACS Omega ; 9(26): 28827-28840, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973903

RESUMEN

Hydrogels with the main objective of releasing mesalamine (5-aminosalicylic acid) in the colon in a modified manner were formulated in the present work using a free-radical polymerization approach. Different ratios of hyaluronic acid were cross-linked with methacrylic and acrylic acids using methylenebis(acrylamide). The development of a new polymeric network and the successful loading of drug were revealed by Fourier transform infrared spectroscopy. Thermogravimetric analysis demonstrated that the hydrogel was more thermally stable than the pure polymer and drug. Scanning electron microscopy (SEM) revealed a rough and hard surface which was relatively suitable for efficient loading of drug and significant penetration of dissolution medium inside the polymeric system. Studies on swelling and drug release were conducted at 37 °C in acidic and basic conditions (pH 1.2, 4.5, 6.8, and 7.4, respectively). Significant swelling and drug release occurred at pH 7.4. Swelling, drug loading, drug release, and gel fraction of the hydrogels increased with increasing hyaluronic acid, methacrylic acid, and acrylic acid concentrations, while the sol fraction decreased. Results obtained from the toxicity study proved the formulated system to be safe for biological systems. The pH-sensitive hydrogels have the potential to be beneficial for colon targeting due to their pH sensitivity and biodegradability. Inflammatory bowel disease may respond better to hydrogel treatment as compared to conventional dosage forms. Specific amount of drug is released from hydrogels at specific intervals to maintain its therapeutic concentration at the required level.

15.
J Cancer ; 15(14): 4717-4730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006085

RESUMEN

Background: Luteolin (LUT) is a bioactive compound with several pharmacological activities including anticancer effect. Doxorubicin (DOX) is an anthracycline chemotherapeutic drug that have proven to be effective in treating various types of cancers. Polymeric micelles (PMs) containing biologically active materials have emerged as prospective dosage forms with high drug-loading, which can add therapeutic benefit to the poorly water-soluble compounds and novel chemical entities. PMs are effective in delivering several drugs, such as anticancer drugs, antifungal drugs, flavonoids and drugs targeting the brain. The aim of the current study is to develop PMs for LUT and DOX as a combined delivery system for cancer therapy. Methods: PMs were prepared using 2.5% of each of LUT and DOX with varying compositions of Poloxamer 188, Poloxamer 407, Vitamin E (TPGS), Poloxamer 123 and Gellucire 44/14 at room temperature. Particle size, polydispersity index, zeta potential, were achieved using Zetasizer Nano particle size analyzer and the sizes were further confirmed with transmission electron microscopy (TEM). Prepared PMs were further characterized using powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). An MTT assay was performed on breast cancer (MCF-7) cells and liver cancer (HepG2) cells to determine the cytotoxic effect of the different PMs formulations. Results: PMs were successfully developed and optimized using 74.3% Poloxamer 407 with 20.7% Vitamin E (TPGS), and 70% Poloxamer 407 with 25% Gellucire 44/14, respectively. The droplet size and polydispersity index were found to be 62.03 ± 3.99 nm, 91.96 ± 5.80 nm and 0.33 ± 0.05, 0.59± 0.03, respectively for PMs containing TPGS and Gellucire 44/14. Zeta potentials of the PMs containing TPGS and Gellucire 44/14 were recorded as -2.27 ±0.11mV and -7.78 ± 0.10 mV, respectively. The PMs showed a spherical structure with approximately 50-90 nm range evident by TEM analysis. The PXRD spectra of PMs powder presented the amorphization of LUT and DOX. The FTIR spectra of LUT-loaded and DOX-loaded PMs were identical, suggesting consistent PMs composition. The MTT assay showed that the representative combined drug loaded PMs treatment led to a reduction in the viability of MCF-7 and HepG2 cells compared to drug free PMs and pure LUT, DOX alone. Conclusions: PMs with LUT and DOX exhibited significant cytotoxic effects against breast and liver cancer cells and could thus be an important new pharmaceutical formulation to treat cancer.

16.
Digit Health ; 10: 20552076241271867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175924

RESUMEN

Objective: Diabetes is a metabolic disorder that causes the risk of stroke, heart disease, kidney failure, and other long-term complications because diabetes generates excess sugar in the blood. Machine learning (ML) models can aid in diagnosing diabetes at the primary stage. So, we need an efficient ML model to diagnose diabetes accurately. Methods: In this paper, an effective data preprocessing pipeline has been implemented to process the data and random oversampling to balance the data, handling the imbalance distributions of the observational data more sophisticatedly. We used four different diabetes datasets to conduct our experiments. Several ML algorithms were used to determine the best models to predict diabetes faultlessly. Results: The performance analysis demonstrates that among all ML algorithms, random forest surpasses the current works with an accuracy rate of 86% and 98.48% for Dataset 1 and Dataset 2; extreme gradient boosting and decision tree surpass with an accuracy rate of 99.27% and 100% for Dataset 3 and Dataset 4, respectively. Our proposal can increase accuracy by 12.15% compared to the model without preprocessing. Conclusions: This excellent research finding indicates that the proposed models might be employed to produce more accurate diabetes predictions to supplement current preventative interventions to reduce the incidence of diabetes and its associated costs.

17.
Heliyon ; 10(1): e22972, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38169693

RESUMEN

Magnolia champaca Linn. has traditionally been used for medicinal activity in Asia for treating various chronic diseases as well as a source of food, medicines, and other commodities. Due to the long-used history of this plant, the present study was designed to explore the in vitro, in vivo and in silico anti-inflammatory and antineoplastic properties of the methanolic extract and fractions and the pure compound isolated from the most active chloroform fraction (CHF) of the stem bark of the plant. The isolated compound from the most active CHF was characterized and identified as a glycoside, trans-syringin, through chromatographic and spectroscopic (1H-NMR and 13C-NMR) analyses. In the in vitro anti-inflammatory assay, CHF was most effective in inhibiting inflammation and hemolysis of RBCs by 73.91 ± 1.70% and 75.92 ± 0.14%, respectively, induced by heat and hypotonicity compared to standard acetylsalicylic acid. In the egg albumin denaturation assay, CME and CHF showed the highest inhibition by 56.25 ± 0.82% and 65.82 ± 3.52%, respectively, contrasted with acetylsalicylic acid by 80.14 ± 2.44%. In an in vivo anti-inflammatory assay, statistically significant (p < 0.05) decreases in the parameters of inflammation, such as paw edema, leukocyte migration and vascular permeability, were recorded in a dose-dependent manner in the treated groups. In the antineoplastic assay, 45.26 ± 2.24% and 68.31 ± 3.26% inhibition of tumor cell growth for pure compound were observed compared to 73.26 ± 3.41% for standard vincristine. Apoptotic morphologic alterations, such as membrane and nuclear condensation and fragmentation, were also found in EAC cells after treatment with the isolated bioactive pure compound. Such treatment also reversed the increased WBC count and decreased RBC count to normal values compared to the untreated EAC cell-bearing mice and the standard vincristine-treated mice. Subsequently, in silico molecular docking studies substantiated the current findings, and the isolated pure compound and standard vincristine exhibited -6.4 kcal/mol and -7.3 kcal/mol binding affinities with topoisomerase-II. Additionally, isolated pure compound and standard diclofenac showed -8.2 kcal/mol and -7.6 kcal/mol binding affinities with the COX-2 enzyme, respectively. The analysis of this research suggests that the isolated bioactive pure compound possesses moderate to potent anti-inflammatory and antineoplastic activity and justifies the traditional uses of the stem bark of M. champaca. However, further investigations are necessary to analyze its bioactivity, proper mechanism of action and clinical trials for the revelation of new drug formulations.

18.
Int J Pharm ; 662: 124492, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038720

RESUMEN

PURPOSES: The objective of this study is to develop a versatile gene carrier based on lipopeptides capable of delivering genetic material into target cells with minimal cytotoxicity. METHODS: Two lipopeptide molecules, palmitoyl-CKKHH and palmitoyl-CKKHH-YGRKKRRQRRR-PKKKRKV, were synthesized using solid phase peptide synthesis and evaluated as transfection agents. Physicochemical characterization of the lipopeptides included a DNA shift mobility assay, particle size measurement, and transmission electron microscopy (TEM) analysis. Cytotoxicity was assessed in CHO-K1 and HepG2 cells using the MTT assay, while transfection efficiency was determined by evaluating the expression of the green fluorescent protein-encoding gene. RESULTS: Our findings demonstrate that the lipopeptides can bind, condense, and shield DNA from DNase degradation. The inclusion of the YGRKKRRQRRR sequence, a transcription trans activator, and the PKKKRKV sequence, a nuclear localization signal, imparts desirable properties. Lipopeptide-based TAT-NLS/DNA nanoparticles exhibited stability for up to 20 days when stored at 6-8 °C, displaying uniformity with a compact size of approximately 120 nm. Furthermore, the lipopeptides exhibited lower cytotoxicity compared to the poly-L-lysine. Transfection experiments revealed that protein expression mediated by the lipopeptide occurred at a charge ratio ranging from 4.0 to 8.0. CONCLUSION: These results indicate that the lipopeptide, composed of a palmitoyl alkyl chain and TAT and NLS sequences, can efficiently condense and protect DNA, form stable and uniform nanoparticles, and exhibit promising characteristics as a potential gene carrier with minimal cytotoxicity.

19.
Heliyon ; 10(13): e33749, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39055824

RESUMEN

Background: There is increasing emphasis on restoring the efficacy of existing antibiotics instead of developing new ones. Objectives: This study aimed to determine the role of Cremophor EL and Cremophor RH40 in the inhibition of efflux pumps in MDR Pseudomonas aeruginosa strains. Methods: Efflux pump-active MDR strains of P. aeruginosa were identified and confirmed by flow cytometry. The identified efflux-active strains were further subjected to determination of the MIC of ciprofloxacin and the synergistic role of non-ionic surfactants (Cremophor EL and Cremophor RH40) along with ciprofloxacin. Results: Out of 30 samples, 6 strains displayed high efflux pump activity. Both Cremophor EL and Cremophor RH40 showed efflux pump inhibitory roles. A 4-fold reduction in the MIC values of ciprofloxacin was observed when Cremophor EL was used along with ciprofloxacin, while a 6-fold reduction was observed when Cremophor RH40 was used along with ciprofloxacin. Both compounds showed synergistic effects with ciprofloxacin, ticarcillin and meropenem when used in a 24-well plate efflux pump inhibitory assay. Conclusion: The inhibition of the efflux pump of MDR Pseudomonas aeruginosa by non-ionic surfactants, namely, Cremophor RH40 and Cremophor EL, provided the best strategy to restore the efficacy of ciprofloxacin.

20.
Heliyon ; 10(7): e28646, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586325

RESUMEN

The structural and electronic properties of ReS2 different forms - three-dimensional bulk and two-dimensional monolayer - were studied within density functional theory and pseudopotentials. A method for standardizing the description of bulk unit cells and "artificial" slab unit cells for DFT research has been proposed. The preference of this method for studying zone dispersion has been shown. The influence of the vacuum layer thickness on specified special high-symmetry points is discussed. Electron band dispersion in both classical 3D Brillouin zones and transition to 2D Brillouin zones in the proposed two-dimensional approach using the Niggli form of the unit cell was compared. The proposed two-dimensional approach is preferable for low-symmetry layered crystals such as ReS2. It was established that the bulk ReS2 is a direct gap semiconductor (band gap of 1.20 eV), with the direct transition lying in the X point of the first Brillouin zone, and it is in good agreement with published experimental data. The reduction in material dimension from bulk to monolayer was conducted with an increasing band gap up to 1.45 eV, with a moving direct transition towards the Brillouin zone center. The monolayer of ReS2 is a direct-gap semiconductor in a wide range of temperatures, excluding only a narrow range at low temperatures, where it comes as a quasi-direct gap semiconductor. The transition, situated directly in the Γ-point, lies 3.3 meV below the first direct transition located near this point. The electronic density of states of ReS2 in the bulk and monolayer cases of ReS2 were analyzed. The molecular orbitals were built for both types of ReS2 structures as well as the electron difference density maps. For all types of ReS2 structures, an analysis of populations according to Mulliken and Voronoi was carried out. All calculated data is discussed in the context of weak quantum confinement in the 2D case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA