RESUMEN
The aim of molecular electronics is to miniaturize active electronic devices and ultimately construct single-molecule nanocircuits using molecules with diverse structures featuring various functions, which is extremely challenging. Here, we realize a gate-controlled rectifying function (the on/off ratio reaches â¼60) and a high-performance field effect (maximum on/off ratio >100) simultaneously in an initially symmetric single-molecule photoswitch comprising a dinuclear ruthenium-diarylethene (Ru-DAE) complex sandwiched covalently between graphene electrodes. Both experimental and theoretical results consistently demonstrate that the initially degenerated frontier molecular orbitals localized at each Ru fragment in the open-ring Ru-DAE molecule can be tuned separately and shift asymmetrically under gate electric fields. This symmetric orbital shifting (AOS) lifts the degeneracy and breaks the molecular symmetry, which is not only essential to achieve a diode-like behavior with tunable rectification ratio and controlled polarity, but also enhances the field-effect on/off ratio at the rectification direction. In addition, this gate-controlled symmetry-breaking effect can be switched on/off by isomerizing the DAE unit between its open-ring and closed-ring forms with light stimulus. This new scheme offers a general and efficient strategy to build high-performance multifunctional molecular nanocircuits.
RESUMEN
Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor-acceptor structure via a sensitive single-molecule electrical approach. The radical is sandwiched between nanogapped graphene electrodes via covalent amide bonds to construct stable graphene-molecule-graphene single-molecule junctions. We measure the electrical conductance as a function of temperature and track the evolution of the closed-shell and open-shell electronic structures in real time, the open-shell triplet state being stabilized with increasing temperature. Furthermore, we tune the spin states by external stimuli, such as electrical and magnetic fields, and extract thermodynamic and kinetic parameters of the transition between closed-shell and open-shell states. Our findings provide insights into the evolution of single-molecule radicals under external stimuli, which may proof instrumental for the development of functional quantum spin-based molecular devices.
RESUMEN
Ternary zinc-nickel-aluminum hydrotalcites (ZnNiAl-LDHs) were prepared by hydrothermal synthesis. The structure and morphology of the materials were characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption-desorption (BET) and other test techniques. ZnNiAl-LDHs was applied in the treatment of uranium-containing wastewater, the effects of initial pH of the solution, adsorption temperature and contact time on its adsorption performance were systematically investigated, and the adsorption performance of ZnNiAl-LDHs and ZnAl-LDHs on uranyl ions were compared. The result showed that ZnNiAl-LDHs were 3D microspheres self-assembled from flakes, with a specific surface area of 102.02 m2/g, which was much larger than that of flake ZnAl-LDHs (18.49 m2/g), and the saturation adsorption capacity of ZnNiAl-LDHs for uranyl ions (278.26 mg/g) was much higher than that of ZnAl-LDHs for uranyl ions (189.16 mg/g), so the ternary ZnNiAl-LDHs had a more excellent adsorption capacity. In addition, kinetic and thermodynamic studies showed that the adsorption process of ZnNiAl-LDHs on uranyl ions conformed to the pseudo-second-order kinetic model and Langmuir isotherm model. The positive value of ΔH and the negative value of ΔG indicated that the adsorption process was endothermic and spontaneous. The adsorption mechanism was analyzed by X-ray energy spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results showed that the adsorption of uranyl ions by ZnNiAl-LDHs mainly consisted of complexation and ion substitution. The research results prove that ZnNiAl-LDHs is an adsorbent with low cost and excellent performance, and it has a good application prospect in the field of uranium-containing wastewater treatment.
RESUMEN
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has rapidly spread and caused a severe global pandemic. Because no specific drugs are available for COVID-19 and few vaccines are available for SARS-CoV-2, accurate and rapid diagnosis of COVID-19 has been the most crucial measure to control this pandemic. Here, we developed a portable bifunctional electrical detector based on graphene fieldeffect transistors for SARS-CoV-2 through either nucleic acid hybridization or antigen-antibody protein interaction, with ultra-low limits of detection of ~0.1 and ~1 fg mL-1 in phosphate buffer saline, respectively. We validated our method by assessment of RNA extracts from the oropharyngeal swabs of ten COVID-19 patients and eight healthy subjects, and the IgM/IgG antibodies from serum specimens of six COVID-19 patients and three healthy subjects. Here we show that the diagnostic results are in excellent agreement with the findings of polymerase chain reaction-based optical methods; they also exhibit rapid detection speed (~10 min for nucleic acid detection and ~5 min for immunoassay). Therefore, our assay provides an efficient, accurate tool for high-throughput point-of-care testing. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at 10.1007/s40843-020-1577-y.
RESUMEN
Traditional hydrothermal method (TH) and alkali fusion-assisted hydrothermal method (AFH) were evaluated for the preparation of zeolites from waste basalt powder by using NaOH as the activation reagent in this study. The synthesized products were characterized by BET, XRD, FTIR and SEM. The effects of acid treatment, alkali/basalt ratio, calcination temperature and crystallization temperature on the synthesis process were studied. The results showed that AFH successfully synthesized zeolite X with higher crystallinity and no zeolite was formed by TH. The specific surface area of synthetic zeolite X was 486.46 m2·g-1, which was much larger than that of original basalt powder (12.12 m2·g-1). Acid treatment and calcination temperature had no effect on zeolite types, but acid treatment improved the yield and quality of zeolite. Alkali/basalt ratio and crystallization temperature not only affected the crystallinity of synthesized zeolites but also affected its type. The optimum synthesis condition of zeolite X are as follows: acid treatment of 5 wt% HCl solution, NaOH/basalt ratio of 1:1, a calcination temperature of 650 °C and crystallization temperature of 120 °C. The work shows that basalt can be used as a raw material to prepare zeolite.