Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 13(12): 1162-70, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23086447

RESUMEN

The NF-κB protein RelB controls dendritic cell (DC) maturation and may be targeted therapeutically to manipulate T cell responses in disease. Here we report that RelB promoted DC activation not as the expected RelB-p52 effector of the noncanonical NF-κB pathway, but as a RelB-p50 dimer regulated by canonical IκBs, IκBα and IκBɛ. IκB control of RelB minimized spontaneous maturation but enabled rapid pathogen-responsive maturation. Computational modeling of the NF-κB signaling module identified control points of this unexpected cell type-specific regulation. Fibroblasts that we engineered accordingly showed DC-like RelB control. Canonical pathway control of RelB regulated pathogen-responsive gene expression programs. This work illustrates the potential utility of systems analyses in guiding the development of combination therapeutics for modulating DC-dependent T cell responses.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Activación de Linfocitos , FN-kappa B/metabolismo , Factor de Transcripción ReIB/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Quinasa I-kappa B/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/genética , Multimerización de Proteína , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 9/metabolismo , Factor de Transcripción ReIB/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-35953664

RESUMEN

Quantitative Systems Pharmacology (QSP) modeling is increasingly applied in the pharmaceutical industry to influence decision making across a wide range of stages from early discovery to clinical development to post-marketing activities. Development of standards for how these models are constructed, assessed, and communicated is of active interest to the modeling community and regulators but is complicated by the wide variability in the structures and intended uses of the underlying models and the diverse expertise of QSP modelers. With this in mind, the IQ Consortium conducted a survey across the pharmaceutical/biotech industry to understand current practices for QSP modeling. This article presents the survey results and provides insights into current practices and methods used by QSP practitioners based on model type and the intended use at various stages of drug development. The survey also highlights key areas for future development including better integration with statistical methods, standardization of approaches towards virtual populations, and increased use of QSP models for late-stage clinical development and regulatory submissions.

3.
Proc Natl Acad Sci U S A ; 116(15): 7533-7542, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30898885

RESUMEN

Activation of the Met receptor tyrosine kinase, either by its ligand, hepatocyte growth factor (HGF), or via ligand-independent mechanisms, such as MET amplification or receptor overexpression, has been implicated in driving tumor proliferation, metastasis, and resistance to therapy. Clinical development of Met-targeted antibodies has been challenging, however, as bivalent antibodies exhibit agonistic properties, whereas monovalent antibodies lack potency and the capacity to down-regulate Met. Through computational modeling, we found that the potency of a monovalent antibody targeting Met could be dramatically improved by introducing a second binding site that recognizes an unrelated, highly expressed antigen on the tumor cell surface. Guided by this prediction, we engineered MM-131, a bispecific antibody that is monovalent for both Met and epithelial cell adhesion molecule (EpCAM). MM-131 is a purely antagonistic antibody that blocks ligand-dependent and ligand-independent Met signaling by inhibiting HGF binding to Met and inducing receptor down-regulation. Together, these mechanisms lead to inhibition of proliferation in Met-driven cancer cells, inhibition of HGF-mediated cancer cell migration, and inhibition of tumor growth in HGF-dependent and -independent mouse xenograft models. Consistent with its design, MM-131 is more potent in EpCAM-high cells than in EpCAM-low cells, and its potency decreases when EpCAM levels are reduced by RNAi. Evaluation of Met, EpCAM, and HGF levels in human tumor samples reveals that EpCAM is expressed at high levels in a wide range of Met-positive tumor types, suggesting a broad opportunity for clinical development of MM-131.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antineoplásicos Inmunológicos/farmacología , Molécula de Adhesión Celular Epitelial/antagonistas & inhibidores , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas Proto-Oncogénicas c-met/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Immunity ; 34(2): 188-200, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21333553

RESUMEN

The N-terminal nuclear export sequence (NES) of inhibitor of nuclear factor kappa B (NF-κB) alpha (IκBα) promotes NF-κB export from the cell nucleus to the cytoplasm, but the physiological role of this export regulation remains unknown. Here we report the derivation and analysis of genetically targeted mice harboring a germline mutation in IκBα NES. Mature B cells in the mutant mice displayed nuclear accumulation of inactive IκBα complexes containing a NF-κB family member, cRel, causing their spatial separation from the cytoplasmic IκB kinase. This resulted in severe reductions in constitutive and canonical NF-κB activities, synthesis of p100 and RelB NF-κB members, noncanonical NF-κB activity, NF-κB target gene induction, and proliferation and survival responses in B cells. Consequently, mice displayed defective B cell maturation, antibody production, and formation of secondary lymphoid organs and tissues. Thus, IκBα nuclear export is essential to maintain constitutive, canonical, and noncanonical NF-κB activation potentials in mature B cells in vivo.


Asunto(s)
Linfocitos B/patología , Proteínas I-kappa B/metabolismo , Síndromes de Inmunodeficiencia/genética , Tejido Linfoide/patología , Señales de Exportación Nuclear/fisiología , Transporte Activo de Núcleo Celular , Animales , Linfocitos B/metabolismo , Muerte Celular , División Celular , Regulación de la Expresión Génica/genética , Mutación de Línea Germinal , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/patología , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Señales de Exportación Nuclear/genética , Tamaño de los Órganos , Ganglios Linfáticos Agregados/patología , Proteínas Proto-Oncogénicas c-rel/metabolismo , Bazo/patología , Transcripción Genética
5.
Invest New Drugs ; 35(1): 68-78, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27853996

RESUMEN

Background HER3/EGFR heterodimers have been implicated as a mode of resistance to EGFR-directed therapies. Methods This Phase 1 trial assessed the tolerability, maximum tolerated dose (MTD) and pharmacokinetic (PK) properties of the HER-3 antibody seribantumab in combination with cetuximab (Part I) or cetuximab and irinotecan (Part II) in patients with EGFR-dependent cancers. In Part I, escalating doses of seribantumab and cetuximab were administered. In Part II of the trial, escalating doses of seribantumab/cetuximab were combined with irinotecan 180 mg/m2 administered every two weeks. Results 34 patients were enrolled in Part I (seribantumab/cetuximab) and 14 patients were enrolled in Part II (seribantumab/cetuximab/irinotecan). Common toxicities of seribantumab/cetuximab included acneiform rash, diarrhea, stomatitis, and paronychia. The MTD of Part I was seribantumab 40 mg/kg bolus, then 20 mg/kg weekly combined with cetuximab 400 mg/m2 bolus, then 250 mg/m2 IV weekly. Common toxicities reported in the seribantumab/cetuximab/irinotecan combination were similar to the Part I portion. However, toxicities were more frequent and severe with the triplet combination. There was one treatment-related death in Part II secondary to Grade 4 neutropenia and grade 3 diarrhea. Other dose-limiting toxicities in Part II were Grade 3 mucositis and Grade 3 diarrhea. A cholangiocarcinoma patient, previously untreated with EGFR-directed therapy, had a confirmed partial response (PR). One colorectal cancer patient, previously treated with EGFR-directed therapy, had an unconfirmed PR. Conclusions Seribantumab/cetuximab was well tolerated and patients experienced toxicities typical to EGFR inhibition. Unlike the seribantumab/cetuximab doublet, seribantumab/cetuximab/irinotecan was difficult to tolerate in this heavily pretreated population. There was limited efficacy of the combination therapy.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Camptotecina/análogos & derivados , Cetuximab , Receptor ErbB-3/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Camptotecina/efectos adversos , Camptotecina/farmacología , Camptotecina/uso terapéutico , Cetuximab/efectos adversos , Cetuximab/farmacología , Cetuximab/uso terapéutico , Receptores ErbB/genética , Femenino , Humanos , Irinotecán , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
6.
Mol Cell ; 30(5): 632-41, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18538661

RESUMEN

Inflammatory activation of NF-kappaB involves the stimulus-induced degradation of the NF-kappaB-bound inhibitor IkappaB via the IkappaB kinase (IKK). In response to UV irradiation, however, the mechanism and function of NF-kappaB activation remain unclear. Using a combined biochemical, genetic, and computational modeling approach, we delineate a dual requirement for constitutive IKK-dependent and IKK-independent IkappaB degradation pathways in conjunction with UV-induced translational inhibition. Interestingly, we find that the high homeostatic turnover of IkappaB in resting cells renders the NF-kappaB system remarkably resistant to metabolic stresses, but the two degradation pathways critically and differentially tune NF-kappaB responsiveness to UV. Indeed, in the context of low chronic inflammation that accelerates NF-kappaB-bound IkappaB degradation, UV irradiation results in dramatic NF-kappaB activation. Our work suggests that the human health relevance of NF-kappaB activation by UV lies with cellular homeostatic states that are associated with pathology rather than with healthy physiology.


Asunto(s)
FN-kappa B/metabolismo , Biosíntesis de Proteínas/efectos de la radiación , Rayos Ultravioleta , Animales , Células Cultivadas , Homeostasis/efectos de la radiación , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Inflamación/metabolismo , Ratones , Transducción de Señal/efectos de la radiación
7.
Methods ; 65(1): 95-104, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23872324

RESUMEN

Antibodies are essential components of the adaptive immune system that provide protection from extracellular pathogens and aberrant cells in the host. Immunoglobulins G, which have been adapted for therapeutic use due to their exquisite specificity of target recognition, are bivalent homodimers composed of two antigen binding Fab arms and an immune cell recruiting Fc module. In recent years significant progress has been made in optimizing properties of both Fab and Fc components to derive antibodies with improved affinity, stability, and effector function. However, systematic analyses of the efficiency with which antibodies crosslink their targets have lagged, despite the well-recognized importance of this cross-arm binding for optimal antigen engagement. Such an understanding is particularly relevant given the variety of next-generation multispecific antibody scaffolds under development. In this manuscript we attempt to fill this gap by presenting a framework for analysis and optimization of antibody cross-arm engagement. We illustrate the power of this integrated approach by presenting case studies for rational multispecific antibody design based on quantitative assessment of the interplay between antibody valency, target expression, and cross-arm binding efficiency. We conclude that optimal design parameters for cross-arm binding strongly depend on the biological context of the disease, and that cross-arm binding efficiency needs to be considered for successful application of multispecific antibodies.


Asunto(s)
Anticuerpos Biespecíficos/química , Anticuerpos Monoclonales/química , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales/farmacología , Especificidad de Anticuerpos , Línea Celular , Humanos , Inmunoglobulina G/química , Concentración 50 Inhibidora , Unión Proteica , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/inmunología , Receptor ErbB-3/metabolismo , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo
8.
PLoS Comput Biol ; 9(6): e1003112, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825938

RESUMEN

Many cellular stress-responsive signaling systems exhibit highly dynamic behavior with oscillatory features mediated by delayed negative feedback loops. What remains unclear is whether oscillatory behavior is the basis for a signaling code based on frequency modulation (FM) or whether the negative feedback control modules have evolved to fulfill other functional requirements. Here, we use experimentally calibrated computational models to interrogate the negative feedback loops that regulate the dynamic activity of the transcription factor NF-κB. Linear stability analysis of the model shows that oscillatory frequency is a hard-wired feature of the primary negative feedback loop and not a function of the stimulus, thus arguing against an FM signaling code. Instead, our modeling studies suggest that the two feedback loops may be tuned to provide for rapid activation and inactivation capabilities for transient input signals of a wide range of durations; by minimizing late phase oscillations response durations may be fine-tuned in a graded rather than quantized manner. Further, in the presence of molecular noise the dual delayed negative feedback system minimizes stochastic excursions of the output to produce a robust NF-κB response.


Asunto(s)
Retroalimentación , FN-kappa B/metabolismo , Transducción de Señal , Simulación por Computador
9.
RSC Chem Biol ; 4(7): 512-523, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37415863

RESUMEN

There is an increasing interest to develop therapeutics that modulate challenging or undruggable target proteins via a mechanism that involves ternary complexes. In general, such compounds can be characterized by their direct affinities to a chaperone and a target protein and by their degree of cooperativity in the formation of the ternary complex. As a trend, smaller compounds have a greater dependency on intrinsic cooperativity to their thermodynamic stability relative to direct target (or chaperone) binding. This highlights the need to consider intrinsic cooperativity of ternary complex-forming compounds early in lead optimization, especially as they provide more control over target selectivity (especially for isoforms) and more insight into the relationship between target occupancy and target response via estimation of ternary complex concentrations. This motivates the need to quantify the natural constant of intrinsic cooperativity (α) which is generally defined as the gain (or loss) in affinity of a compound to its target in pre-bound vs. unbound state. Intrinsic cooperativities can be retrieved via a mathematical binding model from EC50 shifts of binary binding curves of the ternary complex-forming compound with either a target or chaperone relative to the same experiment but in the presence of the counter protein. In this manuscript, we present a mathematical modeling methodology that estimates the intrinsic cooperativity value from experimentally observed apparent cooperativities. This method requires only the two binary binding affinities and the protein concentrations of target and chaperone and is therefore suitable for use in early discovery therapeutic programs. This approach is then extended from biochemical assays to cellular assays (i.e., from a closed system to an open system) by accounting for differences in total ligand vs. free ligand concentrations in the calculations of ternary complex concentrations. Finally, this model is used to translate biochemical potency of ternary complex-forming compounds into expected cellular target occupancy, which could ultimately serve as a way for validation or de-validation of hypothesized biological mechanisms of action.

10.
Sci Transl Med ; 15(681): eabq5241, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724238

RESUMEN

In October 2019, Novartis launched brolucizumab, a single-chain variable fragment molecule targeting vascular endothelial growth factor A, for the treatment of neovascular age-related macular degeneration. In 2020, rare cases of retinal vasculitis and/or retinal vascular occlusion (RV/RO) were reported, often during the first few months after treatment initiation, consistent with a possible immunologic pathobiology. This finding was inconsistent with preclinical studies in cynomolgus monkeys that demonstrated no drug-related intraocular inflammation, or RV/RO, despite the presence of preexisting and treatment-emergent antidrug antibodies (ADAs) in some animals. In this study, the immune response against brolucizumab in humans was assessed using samples from clinical trials and clinical practice. In the brolucizumab-naïve population, anti-brolucizumab ADA responses were detected before any treatment, which was supported by the finding that healthy donors can harbor brolucizumab-specific B cells. This suggested prior exposure of the immune system to proteins with structural similarity. Experiments on samples showed that naïve and brolucizumab-treated ADA-positive patients developed a class-switched, high-affinity immune response, with several linear epitopes being recognized by ADAs. Only patients with RV/RO showed a meaningful T cell response upon recall with brolucizumab. Further studies in cynomolgus monkeys preimmunized against brolucizumab with adjuvant followed by intravitreal brolucizumab challenge demonstrated that high ADA titers were required to generate ocular inflammation and vasculitis/vascular thrombosis, comparable to RV/RO in humans. Immunogenicity therefore seems to be a prerequisite to develop RV/RO. However, because only 2.1% of patients with ADA develop RV/RO, additional factors must play a role in the development of RV/RO.


Asunto(s)
Vasculitis Retiniana , Animales , Humanos , Adyuvantes Inmunológicos , Inhibidores de la Angiogénesis , Inflamación , Inyecciones Intravítreas , Macaca fascicularis , Factor A de Crecimiento Endotelial Vascular
11.
Sci Transl Med ; 15(681): eabq5068, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724241

RESUMEN

Immunogenicity against intravitreally administered brolucizumab has been previously described and associated with cases of severe intraocular inflammation, including retinal vasculitis/retinal vascular occlusion (RV/RO). The presence of antidrug antibodies (ADAs) in these patients led to the initial hypothesis that immune complexes could be key mediators. Although the formation of ADAs and immune complexes may be a prerequisite, other factors likely contribute to some patients having RV/RO, whereas the vast majority do not. To identify and characterize the mechanistic drivers underlying the immunogenicity of brolucizumab and the consequence of subsequent ADA-induced immune complex formation, a translational approach was performed to bridge physicochemical characterization, structural modeling, sequence analysis, immunological assays, and a quantitative systems pharmacology model that mimics physiological conditions within the eye. This approach revealed that multiple factors contributed to the increased immunogenic potential of brolucizumab, including a linear epitope shared with bacteria, non-natural surfaces due to the single-chain variable fragment format, and non-native drug species that may form over prolonged time in the eye. Consideration of intraocular drug pharmacology and disease state in a quantitative systems pharmacology model suggested that immune complexes could form at immunologically relevant concentrations modulated by dose intensity. Assays using circulating immune cells from treated patients or treatment-naïve healthy volunteers revealed the capacity of immune complexes to trigger cellular responses such as enhanced antigen presentation, platelet aggregation, endothelial cell activation, and cytokine release. Together, these studies informed a mechanistic understanding of the clinically observed immunogenicity of brolucizumab and associated cases of RV/RO.


Asunto(s)
Complejo Antígeno-Anticuerpo , Análisis de Causa Raíz , Humanos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Inflamación , Inhibidores de la Angiogénesis , Inyecciones Intravítreas
12.
Proc Natl Acad Sci U S A ; 106(24): 9619-24, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19487661

RESUMEN

Mammalian signaling networks contain an abundance of negative feedback regulators that may have overlapping ("fail-safe") or specific functions. Within the NF-kappaB signaling module, IkappaB alpha is known as a negative feedback regulator, but the newly characterized inhibitor IkappaB delta is also inducibly expressed in response to inflammatory stimuli. To examine IkappaB delta's roles in inflammatory signaling, we mathematically modeled the 4-IkappaB-containing NF-kappaB signaling module and developed a computational phenotyping methodology of general applicability. We found that IkappaB delta, like IkappaB alpha, can provide negative feedback, but each functions stimulus-specifically. Whereas IkappaB delta attenuates persistent, pathogen-triggered signals mediated by TLRs, the more prominent IkappaB alpha does not. Instead, IkappaB alpha, which functions more rapidly, is primarily involved in determining the temporal profile of NF-kappaB signaling in response to cytokines that serve intercellular communication. Indeed, when removing the inducing cytokine stimulus by compound deficiency of the tnf gene, we found that the lethality of ikappab alpha(-/-) mouse was rescued. Finally, we found that IkappaB delta provides signaling memory owing to its long half-life; it integrates the inflammatory history of the cell to dampen NF-kappaB responsiveness during sequential stimulation events.


Asunto(s)
FN-kappa B/metabolismo , Receptores de Citocinas/metabolismo , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Células 3T3 , Animales , Cinética , Ratones , Ratones Endogámicos C57BL
13.
Front Pharmacol ; 13: 860881, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496315

RESUMEN

The goal of this mini-review is to summarize the collective experience of the authors for how modeling and simulation approaches have been used to inform various decision points from discovery to First-In-Human clinical trials. The article is divided into a high-level overview of the types of problems that are being aided by modeling and simulation approaches, followed by detailed case studies around drug design (Nektar Therapeutics, Genentech), feasibility analysis (Novartis Pharmaceuticals), improvement of preclinical drug design (Pfizer), and preclinical to clinical extrapolation (Merck, Takeda, and Amgen).

14.
Cancer Discov ; 12(6): 1500-1517, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35404998

RESUMEN

Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRASG12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with inhibitors of SHP2, MEK, or CDK4/6. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRASG12C-mutated tumors. SIGNIFICANCE: JDQ443 is a structurally novel covalent KRASG12C inhibitor with a unique binding mode that demonstrates potent and selective antitumor activity in cell lines and in vivo models. In preclinical models and patients with KRASG12C-mutated malignancies, JDQ443 shows potent antitumor activity as monotherapy and in combination with the SHP2 inhibitor TNO155. This article is highlighted in the In This Issue feature, p. 1397.


Asunto(s)
Inhibidores Enzimáticos , Indazoles , Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Indazoles/química , Indazoles/farmacología , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
15.
J Cell Biol ; 173(5): 659-64, 2006 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-16735576

RESUMEN

NF-kappaB signaling is known to be critically regulated by the NF-kappaB-inducible inhibitor protein IkappaBalpha. The resulting negative feedback has been shown to produce a propensity for oscillations in NF-kappaB activity. We report integrated experimental and computational studies that demonstrate that another IkappaB isoform, IkappaBepsilon, also provides negative feedback on NF-kappaB activity, but with distinct functional consequences. Upon stimulation, NF-kappaB-induced transcription of IkappaBepsilon is delayed, relative to that of IkappaBalpha, rendering the two negative feedback loops to be in antiphase. As a result, IkappaBepsilon has a role in dampening IkappaBalpha-mediated oscillations during long-lasting NF-kappaB activity. Furthermore, we demonstrate the requirement of both of these distinct negative feedback regulators for the termination of NF-kappaB activity and NF-kappaB-mediated gene expression in response to transient stimulation. Our findings extend the capabilities of a computational model of IkappaB-NF-kappaB signaling and reveal a novel regulatory module of two antiphase negative feedback loops that allows for the fine-tuning of the dynamics of a mammalian signaling pathway.


Asunto(s)
Relojes Biológicos/fisiología , Retroalimentación Fisiológica , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas I-kappa B/farmacología , Inflamación/genética , FN-kappa B/análisis , Animales , Línea Celular , Células Cultivadas , Simulación por Computador , Fibroblastos/metabolismo , Proteínas I-kappa B/efectos de los fármacos , Proteínas I-kappa B/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/farmacología
16.
Elife ; 102021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636321

RESUMEN

Lung squamous cell carcinoma (LSCC) is a considerable global health burden, with an incidence of over 600,000 cases per year. Treatment options are limited, and patient's 5-year survival rate is less than 5%. The ubiquitin-specific protease 28 (USP28) has been implicated in tumourigenesis through its stabilization of the oncoproteins c-MYC, c-JUN, and Δp63. Here, we show that genetic inactivation of Usp28-induced regression of established murine LSCC lung tumours. We developed a small molecule that inhibits USP28 activity in the low nanomole range. While displaying cross-reactivity against the closest homologue USP25, this inhibitor showed a high degree of selectivity over other deubiquitinases. USP28 inhibitor treatment resulted in a dramatic decrease in c-MYC, c-JUN, and Δp63 proteins levels and consequently induced substantial regression of autochthonous murine LSCC tumours and human LSCC xenografts, thereby phenocopying the effect observed by genetic deletion. Thus, USP28 may represent a promising therapeutic target for the treatment of squamous cell lung carcinoma.


Asunto(s)
Proteínas de Unión al ADN/genética , Eliminación de Gen , Neoplasias Pulmonares/genética , Neoplasias de Células Escamosas/genética , Factores de Transcripción/genética , Ubiquitina Tiolesterasa/genética , Animales , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Factores de Transcripción/metabolismo , Ubiquitina Tiolesterasa/metabolismo
17.
J Clin Pharmacol ; 60 Suppl 1: S147-S159, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33205434

RESUMEN

Chimeric antigen receptor T cell (CAR-T cell) therapies have shown significant efficacy in CD19+ leukemias and lymphomas. There remain many challenges and questions for improving next-generation CAR-T cell therapies, and mathematical modeling of CAR-T cells may play a role in supporting further development. In this review, we introduce a mathematical modeling taxonomy for a set of relatively simple cellular kinetic-pharmacodynamic models that describe the in vivo dynamics of CAR-T cell and their interactions with cancer cells. We then discuss potential extensions of this model to include target binding, tumor distribution, cytokine-release syndrome, immunophenotype differentiation, and genotypic heterogeneity.


Asunto(s)
Inmunoterapia Adoptiva , Modelos Biológicos , Receptores Quiméricos de Antígenos/metabolismo , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos , Cinética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
18.
Mol Syst Biol ; 3: 111, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17486138

RESUMEN

Cellular signal transduction pathways are usually studied following administration of an external stimulus. However, disease-associated aberrant activity of the pathway is often due to misregulation of the equilibrium state. The transcription factor NF-kappaB is typically described as being held inactive in the cytoplasm by binding its inhibitor, IkappaB, until an external stimulus triggers IkappaB degradation through an IkappaB kinase-dependent degradation pathway. Combining genetic, biochemical, and computational tools, we investigate steady-state regulation of the NF-kappaB signaling module and its impact on stimulus responsiveness. We present newly measured in vivo degradation rate constants for NF-kappaB-bound and -unbound IkappaB proteins that are critical for accurate computational predictions of steady-state IkappaB protein levels and basal NF-kappaB activity. Simulations reveal a homeostatic NF-kappaB signaling module in which differential degradation rates of free and bound pools of IkappaB represent a novel cross-regulation mechanism that imparts functional robustness to the signaling module.


Asunto(s)
Simulación por Computador , Homeostasis/fisiología , Proteínas I-kappa B/metabolismo , Modelos Biológicos , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Células Cultivadas/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Fibroblastos/metabolismo , Semivida , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Quinasa I-kappa B/fisiología , Proteínas I-kappa B/genética , Cinética , Leupeptinas/farmacología , Ratones , Ratones Noqueados , Inhibidor NF-kappaB alfa , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/genética , Factor de Necrosis Tumoral alfa/farmacología
19.
Curr Opin Immunol ; 40: 51-61, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26995095

RESUMEN

Monoclonal antibodies (mAbs) have revolutionized the diagnosis and treatment of many human diseases and the application of combinations of mAbs has demonstrated improved therapeutic activity in both preclinical and clinical testing. Combinations of antibodies have several advantages such as the capacities to target multiple and mutating antigens in complex pathogens and to engage varied epitopes on multiple disease-related antigens (e.g. receptors) to overcome heterogeneity and plasticity. Oligoclonal antibodies are an emerging therapeutic format in which a novel antibody combination is developed as a single drug product. Here, we will provide historical context on the use of oligoclonal antibodies in oncology and infectious diseases and will highlight practical considerations related to their preclinical and clinical development programs.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Inmunoterapia/métodos , Infecciones/terapia , Neoplasias/terapia , Bandas Oligoclonales/uso terapéutico , Proteínas Recombinantes/uso terapéutico , Animales , Modulación Antigénica , Variación Antigénica , Evaluación Preclínica de Medicamentos , Humanos , Infecciones/inmunología , Neoplasias/inmunología
20.
Sci Transl Med ; 8(324): 324ra14, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26843189

RESUMEN

The anti-epidermal growth factor receptor (EGFR) antibodies cetuximab and panitumumab are used to treat RAS wild-type colorectal cancers (CRCs), but their efficacy is limited by the emergence of acquired drug resistance. After EGFR blockade, about 20% of CRCs develop mutations in the EGFR extracellular domain (ECD) that impair antibody binding and are associated with clinical relapse. We hypothesized that EGFR ECD-resistant variants could be targeted by the recently developed oligoclonal antibody MM-151 that binds multiple regions of the EGFR ECD. MM-151 inhibits EGFR signaling and cell growth in preclinical models, including patient-derived cells carrying mutant EGFR. Upon MM-151 treatment, EGFR ECD mutations decline in circulating cell-free tumor DNA (ctDNA) of CRC patients who previously developed resistance to EGFR blockade. These data provide molecular rationale for the clinical use of MM-151 in patients who become resistant to cetuximab or panitumumab as a result of EGFR ECD mutations.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Cetuximab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Receptores ErbB/genética , Mutación/genética , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Sistema Libre de Células , Cetuximab/farmacología , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/genética , ADN de Neoplasias/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Epítopos/química , Receptores ErbB/química , Células HEK293 , Humanos , Ligandos , Panitumumab , Dominios Proteicos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA