Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 612(7939): 240-245, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477133

RESUMEN

Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2-9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.

2.
Nature ; 594(7864): 508-512, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34163052

RESUMEN

A promising approach to study condensed-matter systems is to simulate them on an engineered quantum platform1-4. However, the accuracy needed to outperform classical methods has not been achieved so far. Here, using 18 superconducting qubits, we provide an experimental blueprint for an accurate condensed-matter simulator and demonstrate how to investigate fundamental electronic properties. We benchmark the underlying method by reconstructing the single-particle band structure of a one-dimensional wire. We demonstrate nearly complete mitigation of decoherence and readout errors, and measure the energy eigenvalues of this wire with an error of approximately 0.01 rad, whereas typical energy scales are of the order of 1 rad. Insight into the fidelity of this algorithm is gained by highlighting the robust properties of a Fourier transform, including the ability to resolve eigenenergies with a statistical uncertainty of 10-4 rad. We also synthesize magnetic flux and disordered local potentials, which are two key tenets of a condensed-matter system. When sweeping the magnetic flux we observe avoided level crossings in the spectrum, providing a detailed fingerprint of the spatial distribution of local disorder. By combining these methods we reconstruct electronic properties of the eigenstates, observing persistent currents and a strong suppression of conductance with added disorder. Our work describes an accurate method for quantum simulation5,6 and paves the way to study new quantum materials with superconducting qubits.

3.
Phys Rev Lett ; 125(12): 120504, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016760

RESUMEN

Quantum algorithms offer a dramatic speedup for computational problems in material science and chemistry. However, any near-term realizations of these algorithms will need to be optimized to fit within the finite resources offered by existing noisy hardware. Here, taking advantage of the adjustable coupling of gmon qubits, we demonstrate a continuous two-qubit gate set that can provide a threefold reduction in circuit depth as compared to a standard decomposition. We implement two gate families: an imaginary swap-like (iSWAP-like) gate to attain an arbitrary swap angle, θ, and a controlled-phase gate that generates an arbitrary conditional phase, ϕ. Using one of each of these gates, we can perform an arbitrary two-qubit gate within the excitation-preserving subspace allowing for a complete implementation of the so-called Fermionic simulation (fSim) gate set. We benchmark the fidelity of the iSWAP-like and controlled-phase gate families as well as 525 other fSim gates spread evenly across the entire fSim(θ,ϕ) parameter space, achieving a purity-limited average two-qubit Pauli error of 3.8×10^{-3} per fSim gate.

4.
Phys Rev Lett ; 123(21): 210501, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809160

RESUMEN

We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)×10^{-3} in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iswap-like and cphase gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.

5.
Nat Commun ; 12(1): 1761, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741936

RESUMEN

Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing.

6.
Science ; 360(6385): 195-199, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29650670

RESUMEN

A key step toward demonstrating a quantum system that can address difficult problems in physics and chemistry will be performing a computation beyond the capabilities of any classical computer, thus achieving so-called quantum supremacy. In this study, we used nine superconducting qubits to demonstrate a promising path toward quantum supremacy. By individually tuning the qubit parameters, we were able to generate thousands of distinct Hamiltonian evolutions and probe the output probabilities. The measured probabilities obey a universal distribution, consistent with uniformly sampling the full Hilbert space. As the number of qubits increases, the system continues to explore the exponentially growing number of states. Extending these results to a system of 50 qubits has the potential to address scientific questions that are beyond the capabilities of any classical computer.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(4 Pt 2): 046138, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16383499

RESUMEN

The binary many-step Markov chain with the step-like memory function is considered as a model for the analysis of rank distributions of words in correlated stochastic symbolic systems. We prove that this distribution obeys the power law with the exponent of the order of unity in the case of rather strong persistent correlations. The Zipf law is shown to be valid for the rank distribution of words with lengths about and shorter than the correlation length in the Markov sequence. A self-similarity in the rank distribution with respect to the decimation procedure is observed.

8.
Phys Rev Lett ; 102(6): 066801, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19257617

RESUMEN

We propose a method of measuring the electron temperature T_{e} in mesoscopic conductors and demonstrate experimentally its applicability to micron-size graphene devices in the linear-response regime (T_{e} approximately T, the bath temperature). The method can be especially useful in case of overheating, T_{e}>T. It is based on analysis of the correlation function of mesoscopic conductance fluctuations. Although the fluctuation amplitude strongly depends on the details of electron scattering in graphene, we show that T_{e} extracted from the correlation function is insensitive to these details.

9.
Phys Rev Lett ; 99(8): 087402, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17930980

RESUMEN

We describe a peculiar fine structure acquired by the in-plane optical phonon at the Gamma point in graphene when it is brought into resonance with one of the inter-Landau-level transitions in this material. The effect is most pronounced when this lattice mode (associated with the G band in graphene Raman spectrum) is in resonance with inter-Landau-level transitions 0 --> +, 1 and -, 1 --> 0, at a magnetic field B{0} approximately 30 T. It can be used to measure the strength of the electron-phonon coupling directly, and its filling-factor dependence can be used experimentally to detect circularly polarized lattice vibrations.


Asunto(s)
Grafito , Espectrometría Raman , Electrones , Grafito/química , Fonones , Vibración
10.
Phys Rev Lett ; 97(14): 146805, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-17155283

RESUMEN

Because of the chiral nature of electrons in a monolayer of graphite (graphene) one can expect weak antilocalization and a positive weak-field magnetoresistance in it. However, trigonal warping (which breaks p-->-p symmetry of the Fermi line in each valley) suppresses antilocalization, while intervalley scattering due to atomically sharp scatterers in a realistic graphene sheet or by edges in a narrow wire tends to restore conventional negative magnetoresistance. We show this by evaluating the dependence of the magnetoresistance of graphene on relaxation rates associated with various possible ways of breaking a "hidden" valley symmetry of the system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA