Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770740

RESUMEN

In this work, a rapid, precise, and cost-valuable method has been established to quantify phenolic compounds in olive oil using new-based hydrophilic interaction solid-phase extraction (SPE). Boehlert's experimental design applied the determination of the optimal operating conditions. An investigation into the effects of the methanol composition (50-100%), the volume of eluent (1-12 mL), and pH (1-3) on the extraction of phenols acids and total phenols from Tunisian olive oils was performed. The results showed that the extraction conditions had a significant effect on the extraction efficiency. The experiment showed that the greatest conditions for the SPE of phenolic acids were the methanol composition at 90.3%, pH at 2.9, and volume at 7.5 mL, respectively. The optimal conditions were applied to different types of olive oils, and it could be concluded that larger concentrations of polyphenols were found in extra virgin olive oil (89.15-218), whereas the lowest levels of these compounds (66.8 and 5.1) were found in cold-pressed crude olive oil and olive pomace oil, respectively.


Asunto(s)
Aceites de Plantas , Proyectos de Investigación , Aceite de Oliva/química , Aceites de Plantas/química , Metanol , Fenoles/química , Extracción en Fase Sólida/métodos
2.
Foods ; 11(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563981

RESUMEN

An experimental design was applied for the optimization of the extraction process of two preservatives, benzoic and sorbic acids (BA, SA), from food drinks. A simple, rapid, and reliable solid-phase extraction (SPE) method for the simultaneous extraction of these two preservatives and their determination by liquid chromatography with a diode array detector was considered. Box−Behnken design (BBD) was applied to both steps of the SPE process: (i) the sample percolation to ensure the retention of the totality of the acids by the silica-based C18 sorbent; (ii) the elution step to ensure desorption of the totality of the acids from the cartridge. Thus, the volume, pH, and flow rate of the sample, and the percentage of MeOH, volume, and flow rate of the elution solvent, were optimized. Sample volume and pH have a significant influence (p < 0.0001 and p = 0.0115) on the percolation yield. However, no effect was recorded for the flow rate (p > 0.05). Flow rate also has no significant effect on the elution efficiency. The proposed new solid-phase extraction method, which can be easily applied to routine monitoring of preservatives BA and SA in juice and soft drink samples, included 0.5 g of C18 sorbent, 1 mL of food drink adjusted to pH 1 and percolated at 4.5 mL min−1, and 1 mL of a solvent mixture composed of methanol/acidified water (pH = 2.6) (90:10, v/v) used in the elution step at a flow rate of 4.5 mL min−1. Validation of the SPE method and the technique of analysis were evaluated, namely, the accuracy, precision, detection, and quantification limits and linearity. Recovery percentages of benzoic and sorbic acids were above 95% with relative standard deviations lower than 1.78%. Detection and quantification limits were 0.177 and 0.592 µg mL−1, and 0.502 and 0.873 µg mL−1 for benzoic acid and sorbic acid respectively. Optimal conditions were applied to commercial fruit juices and soft drinks and a minimal matrix effect was observed. This method was compared with other SPE methods using oxidized activated carbon and multiwalled carbon nanotubes as adsorbents. The yields determined with these last two were low compared to those determined with our method.

3.
J Environ Sci (China) ; 23(5): 860-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21790061

RESUMEN

An analytical method based on TiO2 nanotubes solid-phase extraction (SPE) combined with gas chromatography (GC) was established for the analysis of seven polycyclic aromatic hydrocarbons (PAHs): acenaphtylene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene and pyrene. Factors affecting the extraction efficiency including the eluent type and its volume, adsorbent amount, sample volume, sample pH and sample flow rate were optimized. The characteristic data of analytical performance were determined to investigate the sensitivity and precision of the method. Under the optimized extraction conditions, the method showed good linearity in the range of 0.01-0.8 microg/mL, repeatability of the extraction (RSD were between 6.7% and 13.5%, n = 5) and satisfactory detection limits (0.017-0.059 ng/mL). The developed method was successfully applied to the analysis of surface water (tap, river and dam) samples. The recoveries of PAHs spiked in environmental water samples ranged from 90% to 100%. All the results indicated the potential application of titanate nanotubes as solid-phase extraction adsorbents to pre-treat water samples.


Asunto(s)
Ambiente , Nanotubos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Extracción en Fase Sólida/métodos , Titanio/química , Contaminantes Químicos del Agua/análisis , Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Límite de Detección , Nanotubos/ultraestructura , Reología , Solventes/química , Electricidad Estática , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA