RESUMEN
Coherent optical driving in quantum solids is emerging as a research frontier, with many reports of interesting non-equilibrium quantum phases1-4 and transient photo-induced functional phenomena such as ferroelectricity5,6, magnetism7-10 and superconductivity11-14. In high-temperature cuprate superconductors, coherent driving of certain phonon modes has resulted in a transient state with superconducting-like optical properties, observed far above their transition temperature Tc and throughout the pseudogap phase15-18. However, questions remain on the microscopic nature of this transient state and how to distinguish it from a non-superconducting state with enhanced carrier mobility. For example, it is not known whether cuprates driven in this fashion exhibit Meissner diamagnetism. Here we examine the time-dependent magnetic field surrounding an optically driven YBa2Cu3O6.48 crystal by measuring Faraday rotation in a magneto-optic material placed in the vicinity of the sample. For a constant applied magnetic field and under the same driving conditions that result in superconducting-like optical properties15-18, a transient diamagnetic response was observed. This response is comparable in size with that expected in an equilibrium type II superconductor of similar shape and size with a volume susceptibility χv of order -0.3. This value is incompatible with a photo-induced increase in mobility without superconductivity. Rather, it underscores the notion of a pseudogap phase in which incipient superconducting correlations are enhanced or synchronized by the drive.
RESUMEN
In quantum materials, degeneracies and frustrated interactions can have a profound impact on the emergence of long-range order, often driving strong fluctuations that suppress functionally relevant electronic or magnetic phases1-7. Engineering the atomic structure in the bulk or at heterointerfaces has been an important research strategy to lift these degeneracies, but these equilibrium methods are limited by thermodynamic, elastic and chemical constraints8. Here we show that all-optical, mode-selective manipulation of the crystal lattice can be used to enhance and stabilize high-temperature ferromagnetism in YTiO3, a material that shows only partial orbital polarization, an unsaturated low-temperature magnetic moment and a suppressed Curie temperature, Tc = 27 K (refs. 9-13). The enhancement is largest when exciting a 9 THz oxygen rotation mode, for which complete magnetic saturation is achieved at low temperatures and transient ferromagnetism is realized up to Tneq > 80 K, nearly three times the thermodynamic transition temperature. We interpret these effects as a consequence of the light-induced dynamical changes to the quasi-degenerate Ti t2g orbitals, which affect the magnetic phase competition and fluctuations found in the equilibrium state14-20. Notably, the light-induced high-temperature ferromagnetism discovered in our work is metastable over many nanoseconds, underscoring the ability to dynamically engineer practically useful non-equilibrium functionalities.
RESUMEN
The discovery of high-temperature superconductivity in La_{3}Ni_{2}O_{7} at pressures above 14 GPa has spurred extensive research efforts. Yet, fundamental aspects of the superconducting phase, including the possibility of a filamentary character, are currently subjects of controversial debates. Conversely, a crystal structure with NiO_{6} octahedral bilayers stacked along the c-axis direction was consistently posited in initial studies on La_{3}Ni_{2}O_{7}. Here, we reassess this structure in optical floating zone-grown La_{3}Ni_{2}O_{7} single crystals that show signs of filamentary superconductivity. Employing scanning transmission electron microscopy and single-crystal x-ray diffraction under high pressures, we observe multiple crystallographic phases in these crystals, with the majority phase exhibiting alternating monolayers and trilayers of NiO_{6} octahedra, signifying a profound deviation from the previously suggested bilayer structure. Using density functional theory, we disentangle the individual contributions of the monolayer and trilayer structural units to the electronic band structure of La_{3}Ni_{2}O_{7}, providing a firm basis for advanced theoretical modeling and future evaluations of the potential of the monolayer-trilayer structure for hosting superconductivity.
RESUMEN
We use resonant inelastic x-ray scattering to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr_{0.9}La_{0.1}CuO_{2}. We detect a plasmon gap of â¼120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in Sr_{0.9}La_{0.1}CuO_{2} are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by layered t-J-V model calculations. A similar analysis performed on recent resonant inelastic x-ray scattering data from other cuprates suggests that the plasmon gap is generic and its size is related to the magnitude of the interlayer hopping t_{z}. Our work signifies the three dimensionality of the charge dynamics in layered cuprates and provides a new method to determine t_{z}.
RESUMEN
Spin-orbit Mott insulators composed of t_{2g}^{4} transition metal ions may host excitonic magnetism due to the condensation of spin-orbital J=1 triplons. Prior experiments suggest that the 4d antiferromagnet Ca_{2}RuO_{4} embodies this notion, but a J=0 nonmagnetic state as a basis of the excitonic picture remains to be confirmed. We use Ru L_{3}-edge resonant inelastic x-ray scattering to reveal archetypal J multiplets with a J=0 ground state in the cubic compound K_{2}RuCl_{6}, which are well described within the LS-coupling scheme. This result highlights the critical role of unquenched orbital moments in 4d-electron compounds and calls for investigations of quantum criticality and excitonic magnetism on various crystal lattices.
RESUMEN
We report a comprehensive Cu L_{3}-edge resonant x-ray scattering (RXS) study of two- and three-dimensional (2D and 3D) incommensurate charge correlations in single crystals of the underdoped high-temperature superconductor YBa_{2}Cu_{3}O_{6.67} under uniaxial compression up to 1% along the two inequivalent CuâOâCu bond directions (a and b) in the CuO_{2} planes. We confirm the strong in-plane anisotropy of the 2D charge correlations and observe their symmetric response to pressure: pressure along a enhances correlations along b, and vice versa. Our results imply that the underlying order parameter is uniaxial. In contrast, 3D long-range charge order is only observed along b in response to compression along a. Spectroscopic RXS measurements show that the 3D charge order resides exclusively in the CuO_{2} planes and may thus be generic to the cuprates. We discuss implications of these results for models of electronic nematicity and for the interplay between charge order and superconductivity.
RESUMEN
The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the 'normal' state at elevated temperatures.
RESUMEN
Ruthenium compounds serve as a platform for fundamental concepts such as spin-triplet superconductivity1, Kitaev spin liquids2-5 and solid-state analogues of the Higgs mode in particle physics6,7. However, basic questions about the electronic structure of ruthenates remain unanswered, because several key parameters (including Hund's coupling, spin-orbit coupling and exchange interactions) are comparable in magnitude and their interplay is poorly understood, partly due to difficulties in synthesizing large single crystals for spectroscopic experiments. Here we introduce a resonant inelastic X-ray scattering (RIXS)8,9 technique capable of probing collective modes in microcrystals of 4d electron materials. We observe spin waves and spin-state transitions in the honeycomb antiferromagnet SrRu2O6 (ref. 10) and use the extracted exchange interactions and measured magnon gap to explain its high Néel temperature11-16. We expect that the RIXS method presented here will enable momentum-resolved spectroscopy of a large class of 4d transition-metal compounds.
RESUMEN
The temperature dependence of the superfluid density ρ_{s}(T) has been measured for a series of ultrathin MBE-grown DyBa_{2}Cu_{3}O_{7-δ} superconducting (SC) films by submillimeter wave interferometry combined with time-domain terahertz spectroscopy and IR ellipsometry. We find that all films 10 u.c. and thicker show the same universal temperature dependence of ρ_{s}(T), which follows the critical behavior characteristic of single crystal YBa_{2}Cu_{3}O_{7-δ} as T approaches T_{c}. In 7 u.c. thick films, ρ_{s}(T) declines steeply upon approaching T_{c}, as expected for the Berezinskii-Kosterlitz-Thouless vortex unbinding transition. Our analysis provides evidence for a sharply defined 4 u.c. non-SC interfacial layer, leaving a quasi-2D SC layer on top. We propose that the SC state in this interfacial layer is suppressed by competing (possibly charge) order.
RESUMEN
Terahertz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structures. In complex oxides, this method has been used to melt electronic order, drive insulator-to-metal transitions and induce superconductivity. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature (300 kelvin) in YBa2Cu3O6+x (refs 9, 10). Here we report the crystal structure of this exotic non-equilibrium state, determined by femtosecond X-ray diffraction and ab initio density functional theory calculations. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at above the transition temperature of 52 kelvin causes a simultaneous increase and decrease in the Cu-O2 intra-bilayer and, respectively, inter-bilayer distances, accompanied by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional theory calculations indicate that these motions cause drastic changes in the electronic structure. Among these, the enhancement in the character of the in-plane electronic structure is likely to favour superconductivity.
RESUMEN
In the underdoped regime, the cuprate high-temperature superconductors exhibit a host of unusual collective phenomena, including unconventional spin and charge density modulations, Fermi surface reconstructions, and a pseudogap in various physical observables. Conversely, overdoped cuprates are generally regarded as conventional Fermi liquids possessing no collective electronic order. In partial contradiction to this widely held picture, we report resonant X-ray scattering measurements revealing incommensurate charge order reflections for overdoped (Bi,Pb)2.12Sr1.88CuO6+δ (Bi2201), with correlation lengths of 40-60 lattice units, that persist up to temperatures of at least 250 K. The value of the charge order wavevector decreases with doping, in line with the extrapolation of the trend previously observed in underdoped Bi2201. In overdoped materials, however, charge order coexists with a single, unreconstructed Fermi surface without nesting or pseudogap features. The discovery of re-entrant charge order in Bi2201 thus calls for investigations in other cuprate families and for a reconsideration of theories that posit an essential relationship between these phenomena.
RESUMEN
The electric-current stabilized semimetallic state in the quasi-two-dimensional Mott insulator Ca_{2}RuO_{4} exhibits an exceptionally strong diamagnetism. Through a comprehensive study using neutron and x-ray diffraction, we show that this nonequilibrium phase assumes a crystal structure distinct from those of equilibrium metallic phases realized in the ruthenates by chemical doping, high pressure, and epitaxial strain, which in turn leads to a distinct electronic band structure. Dynamical mean field theory calculations based on the crystallographically refined atomic coordinates and realistic Coulomb repulsion parameters indicate a semimetallic state with partially gapped Fermi surface. Our neutron diffraction data show that the nonequilibrium behavior is homogeneous, with antiferromagnetic long-range order completely suppressed. These results provide a new basis for theoretical work on the origin of the unusual nonequilibrium diamagnetism in Ca_{2}RuO_{4}.
RESUMEN
We report the first determination of the in-plane complex optical conductivity of 1111 high-T_{c} superconducting iron oxypnictide single crystals PrFeAs(O,F) and thin films SmFeAs(O,F) by means of conventional and microfocused infrared spectroscopy, ellipsometry, and time-domain THz transmission spectroscopy. A strong itinerant contribution is found to exhibit a dramatic difference in coherence between the crystal and the film. Using extensive temperature-dependent measurements of THz transmission, we identify a previously undetected 2.5-meV collective mode in the optical conductivity of SmFeAs(O,F), which is strongly suppressed at T_{c} and experiences an anomalous T-linear softening and narrowing below T^{*}≈110 Kâ«T_{c}. The suppression of the infrared absorption in the superconducting state reveals a large optical superconducting gap with a similar gap ratio 2Δ/k_{B}T_{c}≈7 in both materials, indicating strong pairing.
RESUMEN
The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ⼠1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.
RESUMEN
Resonant x-ray scattering at the Dy M_{5} and Ni L_{3} absorption edges was used to probe the temperature and magnetic field dependence of magnetic order in epitaxial LaNiO_{3}-DyScO_{3} superlattices. For superlattices with 2 unit cell thick LaNiO_{3} layers, a commensurate spiral state develops in the Ni spin system below 100 K. Upon cooling below T_{ind}=18 K, Dy-Ni exchange interactions across the LaNiO_{3}-DyScO_{3} interfaces induce collinear magnetic order of interfacial Dy moments as well as a reorientation of the Ni spins to a direction dictated by the strong magnetocrystalline anisotropy of Dy. This transition is reversible by an external magnetic field of 3 T. Tailored exchange interactions between rare-earth and transition-metal ions thus open up new perspectives for the manipulation of spin structures in metal-oxide heterostructures and devices.
RESUMEN
Spin excitations in the overdoped high temperature superconductors Tl_{2}Ba_{2}CuO_{6+δ} and (Bi,Pb)_{2}(Sr,La)_{2}CuO_{6+δ} were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the incoming photon energy above the Cu-L_{3} absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle-hole excitations whose maximum shows a fluorescencelike shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping.
RESUMEN
Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.
RESUMEN
We use high-resolution neutron Larmor diffraction and capacitative dilatometry to investigate spontaneous and forced magnetostriction in undoped, antiferromagnetic YBa_{2}Cu_{3}O_{6.0}, the parent compound of a prominent family of high-temperature superconductors. Upon cooling below the Néel temperature T_{N}=420 K, Larmor diffraction reveals the formation of magnetostructural domains of characteristic size â¼240 nm. In the antiferromagnetic state, dilatometry reveals a minute (4×10^{-6}) orthorhombic distortion of the crystal lattice in external magnetic fields. We attribute these observations to exchange striction and spin-orbit coupling induced magnetostriction, respectively, and show that they have an important influence on the thermal and charge transport properties of undoped and lightly doped cuprates.
RESUMEN
Using resonant magnetic diffraction at the Ni L_{2,3} edge in a LaNiO_{3} superlattice, we show that dynamical effects beyond the standard kinematic approximation can drastically modify the resonant scattering cross section. In particular, the combination of extinction and refraction convert maxima to minima in the azimuthal-angle dependence of the diffracted intensity, which is commonly used to determine orbital and magnetic structures by resonant x-ray diffraction. We provide a comprehensive theoretical description of these effects by numerically solving Maxwell's equations in three dimensions. The understanding and description of dynamical diffraction enhances the capabilities of resonant x-ray scattering as a probe of electronic ordering phenomena in solids.
RESUMEN
We have used Raman scattering to investigate the magnetic excitations and lattice dynamics in the prototypical spin-orbit Mott insulators Sr_{2}IrO_{4} and Sr_{3}Ir_{2}O_{7}. Both compounds exhibit pronounced two-magnon Raman scattering features with different energies, line shapes, and temperature dependencies, which in part reflect the different influence of long-range frustrating exchange interactions. Additionally, we find strong Fano asymmetries in the line shapes of low-energy phonon modes in both compounds, which disappear upon cooling below the antiferromagnetic ordering temperatures. These unusual phonon anomalies indicate that the spin-orbit coupling in Mott-insulating iridates is not sufficiently strong to quench the orbital dynamics in the paramagnetic state.