Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Plant Dis ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39219003

RESUMEN

Gummy stem blight (GSB), caused primarily by the fungus Stagonosporopsis citrulli in the southeastern United States, affects cucurbits and is particularly destructive on watermelon. Previous epidemiological models of GSB constructed for greenhouse cucumber showed leaf wetness and temperature were the primary and secondary environmental factors, respectively, that explained epidemic progress. The objective of this study was to construct a model that predicted GSB severity on field-grown watermelon based on environmental factors. Disease and weather data from six fungicide experiments in Charleston, South Carolina, in spring and fall 1997 and fall 2017, 2018, 2019, and 2022 were used as inputs. Fungicide treatments were grouped into nonsprayed, protectant (chlorothalonil and mancozeb) and GSB-specific (cyprodinil, difenoconazole and fludioxonil) applications. Cumulative hours of leaf wetness was the primary explanatory variable that modeled the increase in proportion GSB severity ≥2% across all epidemics. Incorporation of temperature or other environmental variables did not improve the model. Fit of the overall model was evaluated with k-fold cross validation, where individual experiments were each excluded from the model fitting process. Slopes of predicted disease progress curves were lowered significantly compared to the nonsprayed treatments by applications of protectant fungicides. Applying GSB-specific fungicides alternated with chlorothalonil further reduced slope values. The model successfully predicted progress of GSB epidemics under different weather patterns and fungicide applications.

2.
Plant Dis ; : PDIS01240030SC, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38764345

RESUMEN

Alternaria brassicicola was found on pieces of chopped, bagged kale held 1 week beyond the typical postharvest storage period. Three of 11 Alternaria isolates were identified as A. brassicicola based on species-specific primers and multilocus genotyping with the translation elongation factor 1-alpha, RNA polymerase second largest subunit, and glyceraldehyde-3-phosphate dehydrogenase gene regions. Two isolates of A. alternata, two isolates of A. tenuissima, and four isolates comprising two unidentified species also were found. A. brassicicola also was found in a production field on the same farm. In the greenhouse, only A. brassicicola isolates caused disease on inoculated kale plants. As previously reported, A. brassicicola isolates had larger colony diameters on semiselective Chen and Wu medium than the nonpathogenic isolates. Black spot caused by A. brassicicola on kale leaves in the field can lead to black spot on harvested kale.

3.
Plant Dis ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320374

RESUMEN

Pseudomonas cannabina pv. alisalensis is a gram-negative bacterium that causes bacterial leaf blight in Brassica crops, an important disease that could bring severe damage to the host plants. The aim of this study was to develop a tool that can reliably and accurately quantify P. cannabina pv. alisalensis and distinguish it from other closely related bacterial pathogens. Two species and six pathovars of Pseudomonas were tested: three pathovars, P. syringae pv. coriandricola, P. syringae pv. philadelphi, and P. syringae strains from Vicia faba were found or confirmed to be members of P. cannabina based on the multi-locus sequence analysis and rep-PCR results. The qPCR assay was evaluated for specificity and examined for detection limit in pure bacterial cells and bacteria-spiked plant samples. The assay was applied in monitoring the quantities of the P. cannabina pv. alisalensis DNA over time in inoculated turnip green leaves. As results, the newly developed qPCR assay detected the target DNA in P. cannabina pv. alisalensis suspension as low as 100 CFU/ml and did not detect any of the nontarget bacteria. The qPCR assay detected P. cannabina pv. alisalensis in all the inoculated samples at least 5 days before the symptoms became visible; bacterial quantity increased significantly in the first three days after inoculation but slowed down afterwards. The new qPCR assay for P. cannabina pv. alisalensis detection will facilitate early detection and disease diagnosis, assist research to provide epidemiological insights for the pathogen, and guide implementation of strategies to manage disease and prevent its spread.

4.
Theor Appl Genet ; 136(4): 91, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009963

RESUMEN

KEY MESSAGE: This is the first identification of QTLs underlying resistance in Cucumis melo to an isolate of Pseudoperonospora cubensis identified as Clade 2/mating type A1. Pseudoperonospora cubensis, causal organism of cucurbit downy mildew (CDM), causes severe necrosis and defoliation on Cucumis melo (melon). A recombinant inbred line population (N = 169) was screened against an isolate of P. cubensis (Clade 2/mating type A1) in replicated greenhouse and growth chamber experiments. SNPs (n = 5633 bins) identified in the RIL population were used for quantitative trait loci (QTL) mapping. A single major QTL on chromosome 10 (qPcub-10.3-10.4) was consistently associated with resistance across all experiments, while a second major QTL on chromosome 8 (qPcub-8.3) was identified only in greenhouse experiments. These two major QTLs were identified on the same chromosomes (8 and 10) but in different locations as two major QTLs (qPcub-8.2 and qPcub-10.1) previously identified for resistance to P. cubensis Clade 1/mating type A2. Kompetitive allele-specific PCR (KASP) markers were developed for these four major QTLs and validated in the RIL population through QTL mapping. These markers will provide melon breeders a high-throughput genotyping toolkit for development of melon cultivars with broad tolerance to CDM.


Asunto(s)
Cucumis melo , Cucurbitaceae , Oomicetos , Peronospora , Sitios de Carácter Cuantitativo , Cucumis melo/genética , Enfermedades de las Plantas/genética , Cucurbitaceae/genética
5.
Plant Dis ; 107(10): 3064-3070, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36916848

RESUMEN

Southern blight, caused by the soilborne fungus Athelia rolfsii, has increased in frequency and severity in the southern United States since the use of methyl bromide fumigation ceased. The objective of this study was to evaluate three cultivars of sticky nightshade (Solanum sisymbriifolium), previously used as tomato rootstocks because of resistance to root-knot nematode, for resistance to southern blight. Field experiments in infested soil were done in Georgia in 2020 and 2021 and in South Carolina in 2021. Tomato cultivar Roadster was used as the scion. Control treatments included nongrafted 'Roadster' in all experiments and self-grafted 'Roadster' in Georgia. In all three experiments, all rootstocks significantly reduced incidence of southern blight and increased vigor ratings compared to control treatments (P ≤ 0.007). The rootstocks Maxifort, White Star, and SisSyn II, but not Diamond, significantly increased marketable weight (P ≤ 0.02) and crop value (P < 0.05) compared to control treatments. In South Carolina only, because of greater yields than in Georgia, net returns with Maxifort and White Star were significantly greater than net return with nongrafted 'Roadster' (P = 0.004). When the wholesale price for fresh market tomato is ≥$13/box, grafting may be an effective and economical management for southern blight.


Asunto(s)
Solanum lycopersicum , Solanum , Suelo , Hongos , Georgia
6.
Plant Dis ; 107(12): 3896-3905, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37311227

RESUMEN

Tebuconazole, a demethylation-inhibitor (DMI) fungicide, is widely used on watermelon and muskmelon because it is inexpensive and has been effective against Stagonosporopsis citrulli, the primary causal agent of gummy stem blight in the southeastern United States. Most isolates (94% of 251) collected from watermelon in South Carolina in 2019 and 2021 were moderately resistant to tebuconazole at 3.0 mg/liter in vitro. Ninety isolates were identified as S. citrulli, and no isolates of S. caricae were found in this study. On watermelon and muskmelon seedlings treated with the field rate of tebuconazole, sensitive, moderately resistant, and highly resistant isolates were controlled 99, 74, and 45%, respectively. In vitro, tebuconazole-sensitive isolates were moderately resistant to tetraconazole and flutriafol but sensitive to difenoconazole and prothioconazole, while highly resistant isolates were highly resistant to tetraconazole and flutriafol and moderately resistant to difenoconazole and prothioconazole. On watermelon seedlings treated with field rates of five DMI fungicides in the greenhouse, severity of gummy stem blight did not differ significantly from the nontreated control when seedlings were inoculated with a highly resistant isolate, while severity was lower with all DMIs on seedlings inoculated with a sensitive isolate, although severity was greater with tetraconazole than with the other four DMIs. In the field, tetraconazole rotated with mancozeb did not reduce severity of gummy stem blight caused by a tebuconazole-sensitive isolate when compared to the nontreated control, while the other four DMIs did. With a highly resistant isolate, all DMIs rotated with mancozeb reduced severity of gummy stem blight compared to the nontreated control, but severity with tetraconazole and tebuconazole was greater than with mancozeb alone, and severity with flutriafol, difenoconazole, prothioconazole, and difenoconazole plus cyprodinil did not differ from mancozeb applied alone. Results from in vitro, greenhouse, and field experiments with the five DMI fungicides were highly correlated with each other. Thus, determining relative colony diameters with a discriminatory dose of 3 mg/liter of tebuconazole is an effective way to identify isolates of S. citrulli highly resistant to tebuconazole.


Asunto(s)
Citrullus , Fungicidas Industriales , Fungicidas Industriales/farmacología , South Carolina , Farmacorresistencia Fúngica , Enfermedades de las Plantas/prevención & control
7.
Plant Dis ; 107(5): 1377-1385, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36205688

RESUMEN

Cucurbit downy mildew, caused by Pseudoperonospora cubensis, is an important disease affecting cucurbits worldwide. Chemical control is an effective method for disease control but P. cubensis has a high risk for developing resistance to fungicides. Alternating fungicides with different modes of action is recommended to avoid an increase of resistant subpopulations. Thus, this study was conducted to establish shifts in the sensitivity profiles of P. cubensis isolates during the growing season, wherein chlorothalonil was applied in alternation with either cymoxanil, fluopicolide, or propamocarb in field experiments conducted from 2018 to 2020 at Rocky Mount, NC and in 2018 and 2020 at Charleston, SC. The sensitivity of baseline isolates sampled early in the season or exposed isolates sampled late in the season to these single-site fungicides was determined using a detached-leaf assay, where tested isolates were classified as sensitive or resistant based on the relative disease severity. Based on the Kruskal-Wallis test, the distribution profile of relative disease severity among baseline and exposed isolates was significantly different where chlorothalonil was alternated with fluopicolide (χ2 = 10.82; P = 0.001) but not with cymoxanil (χ2 = 1.39; P = 0.238) or propamocarb (χ2 = 2.37; P = 0.412). Although there was a directional selection toward resistance for isolates sampled from plots that were treated with fluopicolide or propamocarb alternated with chlorothalonil during a growing season, a significant shift in fungicide sensitivity distribution based on combined data were observed for fluopicolide (χ2 = 8.25; P = 0.004) but not propamocarb (χ2 = 1.05; P = 0.461). Baseline and exposed isolates sampled from the cymoxanil-treated plots were all resistant to this fungicide and there was no significant shift in their fungicide sensitivity profile during a growing season (χ2 = 0.06; P = 1.000). These results indicate that a shift toward reduced sensitivity in P. cubensis can occur during a growing season and the efficacy of fluopicolide is likely to decrease as the frequency of the less sensitive subpopulations increases during a production season. The resultant effect on disease severity and selection of an insensitive subpopulation may accelerate the development of resistance to propamocarb in the southeastern United States.


Asunto(s)
Fungicidas Industriales , Oomicetos , Fungicidas Industriales/farmacología , Estaciones del Año , Enfermedades de las Plantas/prevención & control
8.
Plant Dis ; 107(9): 2620-2623, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36774582

RESUMEN

Pollenizer watermelon (Citrullus amarus) must be planted alongside triploid watermelon cultivars to provide a source of pollen. Early season death of pollenizer watermelon cultivars SP-6 and SP-7 was observed in a research field in Charleston County, SC, in April 2022, 3 to 4 weeks after transplanting. Disease incidence was 15 and 12% for the two cultivars, respectively. Two species of Pythium (P. myriotylum and P. aphanidermatum) and three species of Globisporangium (G. ultimum, G. irregulare, and G. spinosum) were recovered from 13 of 17 plants cultured and identified based on the sequences of the cytochrome c oxidase subunit I gene. Pythium spp. were recovered from both cultivars, while Globisporangium spp. were recovered only from 'SP-7'. In pathogenicity tests, 'SP-7' had lower area under the disease progress curve (AUDPC) values than 'SP-6' with one isolate each of four species and lower AUDPC values than seedless watermelon 'Estrella' with one isolate each of two species. Mean AUDPC values did not differ between 'Estrella' and 'SP-6' with any isolate. AUDPC values were greater with G. ultimum on all three cultivars than with one isolate of G. spinosum and both isolates of P. myriotylum and P. aphanidermatum. Susceptibility of the new cultivar SP-7 to Pythium and Globisporangium spp. differs from susceptibility of 'SP-6'. These results will help growers choose which pollenizer cultivar to plant.


Asunto(s)
Citrullus , Pythium , Pythium/genética , Citrullus/genética , Enfermedades de las Plantas , South Carolina
9.
Phytopathology ; 112(9): 1946-1955, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35384722

RESUMEN

In the United States, the cucurbit downy mildew pathogen, Pseudoperonospora cubensis, has been shown to form oospores under laboratory conditions, but there are no reports on the formation of oospores in naturally infected cucurbit plants in the field. This study investigated the occurrence of oospores in naturally infected leaves from cucurbit fields in North Carolina and South Carolina from 2018 to 2020. Oospore viability and survival was also determined outdoors during the winter in North Carolina during this study period using soil containing leaves infested with oospores. About 5% of 1,658 naturally infected cucumber and cantaloupe leaves sampled during the study had oospores, with a mean density of 585 oospores per cm2 of infected leaf tissue. Absolute oospore viability, as assessed using the plasmolysis method, declined linearly (slope = -0.27; P < 0.0001) over the 6-month exposure period from 67.8% in November to 19.3% in May. Other variables being equal, the decrease in oospore viability was significantly affected by soil temperature (b = -0.03 to -0.05; P < 0.0001) and number of rainy days (b = 21.6 to 40.46; P < 0.05), while the effects of soil moisture on oospore viability were less clear. About 20% of the oospores exposed to outdoor conditions at the end the study period were putatively viable and deemed potentially infective. However, these putatively viable oospores failed to germinate or initiate disease when inoculated onto cucumber or cantaloupe leaves. These results indicate that oospores might require some unrecognized stimuli or physiological factors to initiate germination and infection. Nonetheless, viability of oospores at the end of the winter season suggests that once exposed to the right conditions that stimulate germination, these oospores could potentially serve as a primary inoculum source in the southeastern United States where winter temperatures are cold enough to kill cucurbits plants.


Asunto(s)
Cucumis melo , Cucumis sativus , Oomicetos , Peronospora , North Carolina , Enfermedades de las Plantas , Suelo , Estados Unidos
10.
Phytopathology ; 112(8): 1651-1658, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35263164

RESUMEN

A nationwide, quantitative synthesis of fungicide efficacy data on management of cucurbit downy mildew (CDM) caused by Pseudoperonospora cubensis is needed to broadly evaluate fungicide performance. Three-level meta-analysis, three-level meta-regression, and network meta-analyses were conducted on data from 46 cucumber (Cucumis sativus) CDM fungicide efficacy studies conducted in the eastern United States retrieved from Plant Disease Management Reports published between 2009 and 2018. Three response variables were examined in each analysis: disease severity, marketable yield, and total yield, from which percent disease control and percent yield return compared with nontreated controls was calculated. Moderator variables used in the three-level meta-analysis or three-level meta-regression included year, disease pressure, number of fungicide applications, and slicing or pickling cucumbers. In the network meta-analysis, fungicides were grouped by common combinations of Fungicide Resistance Action Committee Codes and modes of action. Overall, fungicides significantly (P < 0.001) reduced disease severity and increased marketable and total yields, resulting in a mean 54.0% disease control and 61.9% marketable and 73.3% total yield return. Subgroup differences were observed for several fungicide applications, control plot disease severity, and cucumber type for marketable yield. Based on the meta-regression analysis for disease severity by year, fungicide efficacy has been decreasing from 2009 to 2018, potentially indicating broad development of fungicide resistance over time. Treatments containing quinone inside inhibitors, pyridinylmethyl-benzamides, and protectants and treatments containing oxysterol binding protein inhibitors and protectants most effectively reduced disease severity. The most effective fungicide combinations for disease control did not always result in the highest yield return.


Asunto(s)
Cucumis sativus , Fungicidas Industriales , Oomicetos , Peronospora , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control
11.
Plant Dis ; 106(3): 1009-1019, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34735276

RESUMEN

Cucurbit downy mildew caused by the oomycete Pseudoperonospora cubensis is an important disease that affects members of Cucurbitaceae family globally. However, temporal dynamics of the disease have not been characterized at the field scale to understand how control strategies influence disease epidemics. Disease severity was assessed visually on cucumber and summer squash treated with weekly alternation of chlorothalonil with cymoxanil, fluopicolide, or propamocarb during the 2018 spring season and 2019 and 2020 fall seasons in North Carolina and the 2018 and 2020 fall seasons in South Carolina. Disease onset was observed around mid-June during the spring season and early September during the fall season, followed by a rapid increase in severity until mid-July in the spring season and late September or mid-October in the fall season, typical of polycyclic epidemics. The Gompertz, logistic, and monomolecular growth models were fitted to disease severity using linear regression and parameter estimates to compare the effects of fungicide treatment and cucurbit host type on disease progress. The Gompertz and logistic models were more appropriate than the monomolecular model in describing temporal dynamics of cucurbit downy mildew, with the Gompertz model providing the best description for 34 of the 44 epidemics examined. Fungicide treatment and host type significantly (P < 0.0001) affected the standardized area under disease progress curve (sAUDPC), final disease severity (Final DS), and weighted mean absolute rates of disease progress (ρ), with these variables, in most cases, being significantly (P < 0.05) lower in fungicide-treated plots than in untreated control plots. Except in a few cases, sAUDPC, Final DS, and ρ were lower in cases where chlorothalonil was alternated with fluopicolide or propamocarb than in cases where chlorothalonil was alternated with cymoxanil or when chlorothalonil was applied alone. These results characterized the temporal progress of cucurbit downy mildew and provided an improved understanding of the dynamics of the disease at the field level. Parameters of disease progress obtained from this study could serve as inputs in simulation studies to assess the efficacy of fungicide alternation in managing fungicide resistance in this pathosystem.


Asunto(s)
Cucurbitaceae , Epidemias , Oomicetos , Peronospora , Enfermedades de las Plantas/prevención & control
12.
Theor Appl Genet ; 134(8): 2577-2586, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33950283

RESUMEN

KEY MESSAGE: This is the first identification of QTLs underlying resistance to Pseudoperonospora cubensis in Cucumis melo using a genetically characterized isolate. Pseudoperonospora cubensis, causal organism of cucurbit downy mildew (CDM), is one of the largest threats to cucurbit production in the eastern USA. Currently, no Cucumis melo (melon) cultivars have significant levels of resistance. Additionally, little is understood about the genetic basis of resistance in C. melo. Recombinant inbred lines (RILs; N = 169) generated from a cross between the resistant melon breeding line MR-1 and susceptible cultivar Ananas Yok'neam were phenotyped for CDM resistance in both greenhouse and growth chamber studies. A high-density genetic linkage map with 5,663 binned SNPs created from the RIL population was utilized for QTL mapping. Nine QTLs, including two major QTLs, were associated with CDM resistance. Of the major QTLs, qPcub-10.1 was stable across growth chamber and greenhouse tests, whereas qPcub-8.2 was detected only in growth chamber tests. qPcub-10.1 co-located with an MLO-like protein coding gene, which has been shown to confer resistance to powdery mildew and Phytophthora in other plants. This is the first screening of C. melo germplasm with a genetically characterized P. cubensis isolate.


Asunto(s)
Ascomicetos/fisiología , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Cucumis melo/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo , Cucumis melo/crecimiento & desarrollo , Cucumis melo/microbiología , Resistencia a la Enfermedad/genética , Ligamiento Genético , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Reproducción
13.
Plant Dis ; 105(5): 1415-1421, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33107793

RESUMEN

Fungicide applications are the main method to manage gummy stem blight on watermelon (Citrullus lanatus) and other cucurbits, but it is unknown whether fungicides affect development of leaf lesions or fruiting bodies by Stagonosporopsis citrulli. Cyprodinil plus fludioxonil (Switch), cyprodinil plus difenoconazole (Inspire Super), cyprodinil (Vangard), fludioxonil (Cannonball), and difenoconazole (Inspire) were applied to watermelon in rotation with chlorothalonil (Bravo) in fall 2017, 2018, and 2019. Water and chlorothalonil applied weekly served as control treatments. All fungicides reduced disease severity (percentage of leaf area diseased) and area under the disease progress curve (AUDPC) in field plots compared with water. Cyprodinil plus fludioxonil and cyprodinil plus difenoconazole reduced disease severity and AUDPC more than chlorothalonil. Fungicides did not affect the number, diameter, expansion, or area of lesions. All fungicides reduced the number of lesions with fruiting bodies of S. citrulli compared with water (P < 0.05). Cyprodinil plus fludioxonil and cyprodinil plus difenoconazole reduced the percentage of leaf lesions with fruiting bodies, and the diameter and area of the portions of leaf lesions covered with fruiting bodies, compared with water and chlorothalonil. Premix fungicides containing cyprodinil reduced fruiting body formation by S. citrulli, which may partially explain their efficacy in managing gummy stem blight.


Asunto(s)
Citrullus , Fungicidas Industriales , Ascomicetos , Cuerpos Fructíferos de los Hongos , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta
14.
Plant Dis ; 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33616432

RESUMEN

In January 2020, charcoal gray, dull lesions were observed on leaves of organic kale (Brassica oleracea var. acephala) cv. Darkibor in two fields in Lexington County, South Carolina, the county with the most acres of leafy brassicas in the state. Leaf spots, also visible on the leaf underside, covered <5% of the leaf area. No spores were present. Portions of leaf spots from eight leaves, four per field, were cultured on one-quarter-strength potato dextrose agar (PDA/4). Eleven isolates of Alternaria spp. were recovered. Isolates ALT12 and UL3 were cultured in A. solani medium and DNA was extracted (Maiero et al. 1991). The internal transcribed spacer (ITS) region, translation elongation factor 1-alpha (tef1), RNA polymerase second largest subunit (rpb2), and Alternaria major allergen (Alt a 1) genes were amplified with the primer pairs V9G/ITS4, EF1-728F/EF1-986R, RPB2-5F2/FRPB2-7cR, and Alt-for/Alt-rev, respectively, and sequenced (Woudenberg et al. 2014). Sequences for isolates ALT12 and UL3, collected from different leaves in the same field, were identical to each other and to isolate AC97 (ITS accession number: LC440597; tef1: LC482018; rpb2: LC476803; Alt a 1: LC481628) of A. japonica Yoshii (Nishikawa and Nakashima 2020). ITS, tef1, repb2, and Alta a 1 sequences for each isolate were deposited in GenBank under the accessions MW374952, MW389653, MW389655, and MW389657 for ALT12 and MW374951, MW389652, MW389654, and MW389656 for UL3, respectively. Conidia of A. japonica (20 of ALT12, 10 of UL3) produced by 7-day-old cultures on Spezieller Nährstoffarmer Agar measured 62.1 ± 11.4 x 18.8 ± 2.2 µm (standard deviation). Median numbers of transverse and longitudinal septae were 6 (4 to 8) and 2 (1 to 3), respectively. Conidia formed singly or in chains of two. Cells were constricted around the transverse septae (Nishikawa and Nakashima 2020; Woudenburg et al. 2014). Chlamydospores were present in cultures of ALT12. ALT12 was pathogenic on kale cv. Darkibor and Winterbor inoculated in a greenhouse following procedures of Al-Lami et al. (2019). Four replicate pots with two plants each were used; plants were 6, 9, and 5 weeks old in trials 1, 2, and 3, respectively. The oldest three leaves of each plant were spray inoculated with a suspension of 5 x 105 conidia/ml; noninoculated control plants were sprayed with water. All plants were kept for 48 h at 100% RH, then moved to a bench in a greenhouse held at 21/16°C day/night temperatures. The second and third oldest leaves were rated 13 days after inoculation. Small gray or black spots developed on inoculated leaves and petioles in all trials, and on one noninoculated leaf in trial one. Disease incidence on inoculated leaves (73.1%) was greater than on noninoculated leaves (0.05%) (P<0.0001). Cultivars did not differ in susceptibility (P=0.12). Portions of lesions on inoculated leaves and portions of noninoculated leaves were cultured onto PDA/4 amended with antibiotics (Keinath 2013). A. japonica was reisolated from 46 of 50 inoculated leaf blades; 22 of 28 inoculated petioles; and 1 of 8, 0 of 8, and 0 of 7 noninoculated leaves in the three trials, respectively. Growers in South Carolina consider black spot, or Alternaria leaf spot, the most important fungal disease on organic kale. The presence of a second causal agent in addition to A. brassicae may increase disease occurrence. A. japonica previously was reported on arugula in California (Tidwell et al. 2014). This is the first report of A. japonica in the eastern United States.

15.
Plant Dis ; 104(8): 2242-2251, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32568629

RESUMEN

Recently, the incidence of Myrothecium leaf spot, a foliar disease of watermelon, has increased in South Carolina. However, the identity of the fungal species responsible for outbreaks of this disease has not been determined. Sequence data from four partial gene regions were used to conduct Bayesian inference in order to identify 95 isolates of Stachybotriaceae. Isolates were collected in South Carolina between July 2015 and May 2018. In total, six species of Stachybotriaceae were identified on watermelon and two other cucurbits: Albifimbria verrucaria, Gregatothecium humicola, Paramyrothecium foliicola, P. humicola, Xenomyrothecium tongaense, and Xepicula leucotricha. Two species, G. humicola and P. foliicola, were the predominant species found. Within these two species, genetic differences within small spatial scales were detected. Five species (all except Xenomyrothecium tongaense) were tested in experiments to determine their pathogenicity and relative virulence on three hosts grown in rotation in South Carolina. Southern pea plants were less susceptible than watermelon and tomato plants, which were equally susceptible. This constitutes the first reliable report of pathogenicity of any of the five tested species of Stachybotriaceae on these three vegetable crops. Another important finding was that none of the isolates were identified as P. roridum, the species considered to be the only causal agent of Myrothecium leaf spot on cucurbits. We propose the common name "ink spot" for the foliar phase of diseases caused by genera within the family Stachybotriaceae. This name is descriptive and likely to be accepted by growers. To prevent further loss incurred by ink spot, watermelon and tomato crops should be monitored for this disease.


Asunto(s)
Tinta , Enfermedades de las Plantas , Teorema de Bayes , Variación Genética , South Carolina , Virulencia
16.
Plant Dis ; 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33225814

RESUMEN

Anthracnose fruit rot caused by various Colletotrichum spp. is a serious disease for pepper (Capsicum annuum) growers, resulting in extensive fruit loss (Harp et al. 2008). Samples of five pepper fruits were obtained from two commercial farms in Lexington and Pickens counties, South Carolina, in August and September 2019, respectively. All fruits had two or more soft, sunken lesions covered with salmon-colored spore masses. Pieces of diseased tissue cut from the margins of lesions were surface disinfested in 0.6% sodium hypochlorite, rinsed in sterile deionized water, blotted dry, and placed on one-quarter-strength potato dextrose agar (PDA/4) amended with 100 mg chloramphenicol, 100 mg streptomycin sulfate, and 60.5 mg mefenoxam (0.25 ml Ridomil Gold EC) per liter. Two isolates of Colletotrichum sp. per fruit were preserved on dried filter paper and stored at 10º C. One additional isolate of Colletotrichum sp. had been collected from a jalapeño pepper fruit on a farm in Charleston County, South Carolina, in 1997. Colony morphology of three isolates, one per county, on Spezieller Nährstoffarmer Agar (SNA) was pale grey with a faint orange tint. All isolates readily produced conidia on SNA with an average length of 16.4 µm (std. dev. = 1.8 µm) and a width of 2.2 µm (std. dev. = 0.2 µm). Conidia were hyaline, smooth, straight, aseptate, cylindrical to fusiform with one or both ends slightly acute or round, matching the description of C. scovillei (Damm et al. 2012). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-tubulin (TUB2) genes from three isolates were amplified and sequenced with the primer pairs GDF1/GDR1 and T1/Bt2b, respectively. Species within the C. acutatum clade can be readily distinguished with GAPDH or TUB2 (Cannon et al. 2012). The GAPDH and TUB2 sequences for all three isolates were 100% similar to each other and strain CBS 126529 (GAPDH accession number JQ948597; TUB2 accession number JQ949918) of C. scovillei (Damm et al. 2012). GAPDH and TUB2 sequences for each isolate were deposited in GenBank under the accessions MT826948-MT826950 and MT826951-MT826953, respectively. A pathogenicity test was conducted on jalapeño pepper fruits by placing a 10-ul droplet of a 5 x 105 conidial suspension of each isolate onto a wound made with a sterile toothpick. Control peppers were mock inoculated with 10 ul sterile distilled water. A humid chamber was prepared by placing moist paper towels on the bottom of a sealed crisper box. Inoculated peppers were placed on upside-down 60 ml plastic condiment cups. Three replicate boxes each containing all four treatments were prepared. The experiment was repeated once. After 7 days in the humid chamber at 26ºC, disease did not develop on control fruits, whereas soft, sunken lesions covered with salmon-colored spores developed on inoculated fruits. Lesions were measured and C. scovillei was re-isolated onto amended PDA/4 as previously described. Lesion length averaged 15.6 mm (std dev. = 4.1 mm) by 11.5 mm (std dev. = 2.0 mm). Colletotrichum sp. resembling the original isolate were recovered from all inoculated fruit, but not from non-inoculated fruit. C. scovillei has been reported in Brazil in South America and in China, Indonesia, Japan, Malaysia, South Korea, Taiwan, and Thailand in Asia (Farr and Rossman 2020). This is the first report of C. scovillei as the casual organism of anthracnose fruit rot on pepper in South Carolina and the United States.

17.
Plant Dis ; 104(11): 2832-2842, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32946348

RESUMEN

Species of Pythium cause root and stem rot in cucurbits, but no formal surveys have been conducted in the United States to identify which species are responsible. The cucurbit hosts bottle gourd, cucumber, Hubbard squash, and watermelon were transplanted in May, July, September, and November into sentinel plots in four and five different fields in 2017 and 2018, respectively, in South Carolina. Eight of the nine fields were replanted in March 2019. Isolates (600) were collected and identified by sequencing DNA of the mitochondrial cytochrome oxidase I region. The four most common species were P. spinosum (45.6% of all isolates), P. myriotylum (20.0%), P. irregulare (15.3%), and P. aphanidermatum (12.8%). P. myriotylum and P. aphanidermatum were predominantly isolated in May, July, and September, whereas P. spinosum and P. irregulare were predominantly isolated in November and March. Isolates of P. ultimum, P. irregulare, and P. spinosum were more virulent than isolates of P. myriotylum and P. aphanidermatum at 25°C. Representative isolates were screened in vitro for sensitivity to three fungicides: mefenoxam, propamocarb, and oxathiapiprolin. All isolates were sensitive to mefenoxam and propamocarb, but these same isolates were insensitive to oxathiapiprolin, except those classified taxonomically in Pythium clade I.


Asunto(s)
Cucumis sativus , Fungicidas Industriales , Pythium , Enfermedades de las Plantas , Pythium/genética , South Carolina
18.
Plant Dis ; 104(11): 3019-3025, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32822263

RESUMEN

Pythium species cause root and stem rot in watermelon (Citrullus lanatus), but cucurbit rootstocks used to graft watermelon have not been evaluated for resistance. P. aphanidermatum and P. myriotylum were inoculated onto 15 nongrafted watermelon, citron (Citrullus amarus), bottle gourd (Lagenaria siceraria), and interspecific hybrid squash (Cucurbita maxima × C. moschata) cultivars in a growth chamber. Watermelon was more susceptible than bottle gourd and interspecific hybrid squash at 20 and 30°C. Twenty-one cultivars were inoculated in a field with an equal blend of both Pythium species. Interspecific hybrid squash was less susceptible than bottle gourd and watermelon in 2018 and 2019. Seedless watermelon cultivar Tri-X 313 was grafted to one citron, one bottle gourd, and three interspecific hybrid squash rootstocks. Plants were inoculated in the field as described. Grafting to interspecific hybrid squash rootstocks reduced disease incidence compared with nongrafted controls in 2018 and 2019. Mefenoxam and propamocarb applied at transplanting did not affect disease compared with non-fungicide-treated plots. Grafting to interspecific hybrid squash Camelforce significantly increased total and marketable fruit numbers and total weight in 2019 compared with the nongrafted control. In summary, interspecific hybrid squash was consistently resistant to Pythium, demonstrating resistance and utility in watermelon grafting.


Asunto(s)
Citrullus , Cucurbita , Pythium , Frutas , Raíces de Plantas
19.
Plant Dis ; 104(9): 2481-2488, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32628091

RESUMEN

Fusarium wilt of watermelon (Citrullus lanatus), caused by the soilborne fungus Fusarium oxysporum f. sp. niveum, is the most serious disease of watermelon in South Carolina and other southeastern U.S. states. Isolates of F. oxysporum collected from field-grown plants, greenhouse-grown seedlings, and field soil between 1999 and 2018 were inoculated onto three differential watermelon cultivars to identify races. Of 197 isolates obtained from plants, 12% were nonpathogenic, 2% were race 0, 23% were race 1, and 63% were race 2. One collection of isolates from greenhouse seedlings was exclusively race 1 and the other was exclusively race 2. Seventeen of 81 soil isolates were pathogenic: five were race 1 and 12 were race 2. Reactions of C. amarus PI 296341-FR, Carolina Strongback, and SP-6, cultigens with resistance to race 2, did not differ significantly among five highly virulent race 2 isolates and a standard race 2 isolate, indicating a lack of a race 3 phenotype. Forma specialis-specific primers matched phenotypic race identification for 74% of the isolates. Race-specific primers based on a secreted-in-xylem elicitor present in race 0 and 1 isolates matched phenotypic race identification for 66% of the isolates. Because a majority of the F. oxysporum f. sp. niveum isolates from South Carolina were race 2, integrated management practices should be used until commercial cultivars with resistance to race 2 are available.


Asunto(s)
Citrullus , Fusarium , Enfermedades de las Plantas , Plantones , Suelo , South Carolina , Sudeste de Estados Unidos
20.
Plant Dis ; 103(10): 2592-2598, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31347987

RESUMEN

The objective of this study was to evaluate fungicide applications, host resistance, and trellising, alone and in combination, as management practices for downy mildew on slicing cucumber. A split-split plot experimental design was used with three and four replications in spring and fall 2017, respectively. The whole-plot treatment was fungicide, four applications of chlorothalonil (Bravo Weather Stik 6SC) alternated with three applications of cyazofamid (Ranman 400SC), or water. Split plots were nontrellised or trellised with four strings supported by stakes. Split-split plots were cultivar Bristol, which is intermediately resistant to downy mildew, or cultivar Speedway, which is susceptible to downy mildew with similar parentage as Bristol. In both seasons, area under the disease progress curve (AUDPC) values were lower with fungicides than water for both cultivars. In the spring, AUDPC for Bristol was lower than for Speedway regardless of fungicide treatment. In the fall, Bristol had a lower AUDPC than Speedway with fungicides, but the AUDPC did not differ between the two cultivars with water. The mean AUDPC for trellised plants (376.2) was lower than for nontrellised plants (434.0; P = 0.007). Fungicide applications increased marketable and total fruit weights in both seasons (P ≤ 0.0002). Marketable weight with fungicides was almost double (93% greater) the marketable weight with water. Marketable weight was 55% greater for Bristol than for Speedway in spring, but yields did not differ between cultivars in fall (season-by-cultivar interaction, P ≤ 0.0003). Because trellising had no effect on marketable yields (P = 0.11), trellising is not recommended for managing downy mildew on slicing cucumber. Of the three management techniques examined, fungicides had the largest effects on disease and yields, followed by cultivar resistance.


Asunto(s)
Agricultura/métodos , Cucumis sativus , Resistencia a la Enfermedad , Fungicidas Industriales , Oomicetos , Cucumis sativus/microbiología , Cucumis sativus/fisiología , Fungicidas Industriales/farmacología , Oomicetos/efectos de los fármacos , Oomicetos/fisiología , Enfermedades de las Plantas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA