RESUMEN
Bardawil Lake is a unique aquatic ecosystem that provides a habitat for various fish and other marine organisms. This study aimed to analyze the quality of fish species to prove that this lake is free of pollution, not other Egyptian lakes, due to the accumulation of some heavy metals (Cd, Pb, Cu, and Zn) in various tissues of fish species that were caught from this lake. Thirty-five fish samples were caught during the Spring of 2018 from seven different species: Mugil cephalus, Liza auratus, Sparus aurata, Dicentrarchus labrax, Siganus rivulatus, Anguilla angilla, and Solae solea. The Association of Official Analytical Chemists methods using a spectrophotometer determined the biochemical composition. In contrast, atomic absorption spectrometry (AAS) was employed to determine the heavy metals expressed by µg/g wet weight. Results exposed that the accumulation of essential micronutrient (Cu, Zn) content was higher than toxic elements (Cd & Pb) in muscles in order to Zn > Cu > Pb > Cd. Muscles < gills < liver in order of all metals except Pb with order muscles < liver < gills. The metals studied in the muscles were lower than those set by the WHO and the EU standards. The carcinogenic risk with lower allowable limits of 1 × 10-6 to 1 × 10-4 in both normal and high consumption groups; target and total target hazard quotients (THQ & HI) in muscles were < 1. The biochemical composition level was highest in the liver, except for protein, which was highest in muscle for all fish species. There is no evidence of harmful contaminants in the muscular tissue of the fish sampled from Bardawil Lake, although fishing activity. However, customers should know that health concerns may be associated with overeating fish.
RESUMEN
This study aimed to investigate the relationship between seasonal variations, water parameters and the prevalence of Vibriosis in Gilthead seabream. A total of 160 Gilthead seabream fish were sampled over the course of 1 year from private earthen pond farms in the Suez Canal area and examined for abnormalities and internal lesions. Vibrio alginolyticus, the causative agent of Vibriosis, was isolated and characterized from the sampled Gilthead seabream fish. The study revealed a significant correlation between different seasons and the prevalence of V. alginolyticus, with lower occurrence during autumn. Analysis of water parameters showed that toxic ammonia concentration was not effective in distinguishing between positive and negative cases of V. alginolyticus. Dissolved oxygen showed weak predictive ability for the occurrence of V. alginolyticus, while temperature demonstrated moderate potential as a predictor of its prevalence. pH values, organic matter concentrations and salinity showed no significant association with the occurrence of V. alginolyticus. Experimental challenges highlighted the vulnerability of Gilthead seabream to V. alginolyticus and emphasized the impact of environmental factors, such as pH and toxic ammonia, on their mortality and survival. The study emphasizes the importance of considering seasonal changes and water quality parameters in managing V. alginolyticus in mariculture. It underscores the need for careful monitoring and control of environmental factors to ensure the health and well-being of cultured fish populations. The findings contribute to our understanding of Vibriosis management and provide valuable insights for developing effective strategies in the aquaculture industry.
Asunto(s)
Enfermedades de los Peces , Dorada , Vibriosis , Animales , Vibrio alginolyticus , Estaciones del Año , Amoníaco , Enfermedades de los Peces/epidemiología , Vibriosis/epidemiología , Vibriosis/veterinaria , Factores de RiesgoRESUMEN
New quaternized salicylidene chitosan Schiff bases (QSCSBs) and their N-octyl derivatives (OQCs) have been synthesized and characterized, aiming to develop innovative antimicrobial and anti-biofilm agents. This research holds immense potential, as these compounds could be utilized as anti-biofouling additives in membrane technology in the future. The synthesis involved the modification of low molecular-weight-chitosan (LMC) through simultaneous Schiff base formation and quaternization processes to create QSCSBs. Subsequently, QSCSBs were catalytically reduced to form quaternized N-benzyl chitosan (QBCs) intermediates, which then underwent nucleophilic substitution reactions affording N-octyl quaternized chitosans (OQCs). Characterization techniques such as elemental, spectral, and microscopic analyses were used to confirm the successful synthesis of these materials. As membrane technology relies on surface charge, QSCSBs and OQCs with large zeta potentials could be used as positively charged additives. Moreover, SEM image revealed the regular distribution of pores and voids across the additives' surfaces raises intriguing questions about their implications for membrane performance. Meanwhile, the superior antibacterial and antibiofilm potential of these materials, particularly QSCSB2 and OQC2, indicate that the utilization of these compounds as anti-biofouling additives in membrane technology could significantly improve the performance and longevity of membranes used in various applications such as water treatment and desalination.
Asunto(s)
Antiinfecciosos , Biopelículas , Quitosano , Membranas Artificiales , Bases de Schiff , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Quitosano/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Biopelículas/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Pruebas de Sensibilidad MicrobianaRESUMEN
This study aimed to measure spatial and temporal distributions of total phenolic compounds and their ecological and health hazards using UV-vis spectrophotometers as a low-cost, fast, simple method in water and sediments collected from Timsah Lake, Suez Canal, Egypt, 2022. Also, assessing highly adaptive fungal species associated with contamination is designed. Due to human and environmental activities and industrial waste discharges, Timsah Lake is increasingly threatened by all kinds of pollutants. The results indicated that the seasonal concentration means of the phenolic compounds were winter (0.229) > spring (0.161) > summer (0.124) > autumn (0.131) mg/l and winter (3.08) > summer (2.66) mg/g in water and sediment samples, respectively. The result has shown that the phenol concentrations in all stations were more than 0.005 and 0.1 mg/l for Egyptian National Standards and World Health Organization (WHO) for drinking water but less than the limits of 1 mg/l for wastewater. Notably, the fungi recorded the highest counts during spring, totaling 397 colonies/100 ml of water and 842 colonies/gram of sediment. Four isolates of fungi were identified and deposited in the GenBank database by Aspergillus terreus, Aspergillus terreus, Penicillium roqueforti, and Penicillium rubens under accession numbers OR401933, OR402837, OR402878, and OR424729, respectively. Moreover, ecological risk (RQ) for the total phenolic compounds was > 1 in all investigated stations for water and sediments. The hazard quotient is HQ < 1 in all seasons in water and sediments except winter. The hazard index (HI) in water and sediments for children is higher than for adults. It can be concluded that the low-cost, fast, simple method for determining phenolic content in water and sediment samples, using UV-vis spectrophotometry, was useful for predicting the reactivates of a wide variety of phenol and their derivatives. Furthermore, it can be concluded that Periodic assessments of water quality and strict regulations are necessary to safeguard this vital resource from pollution and ensure the well-being of future generations. Finally, policymakers and water treatment specialists might use the information from this research to reduce these chemical pollutants in Egypt.
Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Fenoles , Contaminantes Químicos del Agua , Egipto , Fenoles/análisis , Lagos/química , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Humanos , Hongos , Estaciones del AñoRESUMEN
The current study examines the effect of dietary supplementation of ethanolic extract of Arthrospira platensis NIOF17/003, which is mainly natural astaxanthins (97.50%), on the growth performance, feed utilization, bacterial abundance, and immune-related and antioxidant gene expressions of the Pacific white leg shrimp, Litopenaeus vannamei. A total of 360 healthy L. vannamei postlarvae (0.19 ± 0.003 g) were divided into four groups (0, 2, 4, and 6 g natural astaxanthins/kg diet) each in three replicates, at an initial density of 30 PLs per tank (40 L capacity). The shrimp were fed the tested diets three times a day at a rate of 10% of their total body weight for 90 days. Diets supplemented with different astaxanthin levels significantly improved shrimp growth performance and feed conversion ratio compared to the control diet. No significant differences were observed in survival rates among all experimental groups. The immune-related genes (prophenoloxidase, lysozyme, beta-glucan binding protein, transglutaminase, and crustin) mRNA levels were significantly upregulated in groups fed with different concentrations of the natural astaxanthins in a dose-dependent manner. The prophenoloxidase gene is the highest immune-upregulated gene (14.71-fold change) in response to astaxanthin supplementation. The superoxide dismutase mRNA level was significantly increased with increasing dietary astaxanthin supplementation. In addition, increasing astaxanthin supplementation levels significantly reduced the count of heterotrophic bacteria and Vibrio spp. in the culture water and shrimp intestine. Overall, the current results concluded that diet supplementation with natural astaxanthin, extracted from Arthrospira platensis, enhanced the growth performance, immune response, and antioxidant status of L. vannamei.
RESUMEN
Amylase producing actinobacteria were isolated and characterized from terrestrial environment. There are a limited number of reports investigating the marine environment; hence, in the present study, four marine enzymes were tested for their amylase production ability. On starch agar plates, the Streptomyces rochei strain showed a higher hydrolytic zone (24 mm) than the other isolates. Growth under optimized culture conditions using Plackett-Burman's experimental design led to a 1.7, 9.8, 7.7, and 3.12-fold increase for the isolates S. griseorubens, S. rochei, S. parvus, and Streptomyces sp., respectively, in the specific activity measurement. When applying the Box-Behnken design on S. rochei using the most significant parameters (starch, K2HPO4, pH, and temperature), there was a 12.22-fold increase in the specific activity measurement 7.37 U/mg. The α-amylase was partially purified, and its molecular weight was determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. α-Amylase was particularly active at pH 6 and 65°C. The purified enzyme was most active at 65°C and pH 6, thermal stability of 70°C for 40 min, and salt concentration of 1 M with Km and Vmax of 6.58 mg/ml and 21.93 µmol/ml/min, respectively. The α-amylase was improved by adding Cu+2, Zn+2, and Fe+2 (152.21%, 207.24%, and 111.89%). Increased production of α-amylase enzyme by S. rochei KR108310 leads to production of significant industrial products.