Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Microbiology (Reading) ; 169(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37606636

RESUMEN

Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.


Asunto(s)
Antibacterianos , Plaguicidas , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Agricultura , Suelo
2.
Artículo en Inglés | MEDLINE | ID: mdl-33739249

RESUMEN

A novel slightly halophilic Gram-stain-negative bacterial strain (MKS20T) was isolated from a brine sample collected from one of the Anderton brine springs in the Cheshire salt district, located in Northern England. Phylogenetic analysis of the 16S rRNA gene sequence revealed a close proximity to Motilimonas eburnea (98.30 %), followed by Motilimonas pumila (96.62 %), the two currently described species within the genus Motilimonas. Strain MKS20T forms white-beige-pigmented colonies and grows optimally at 28-30 °C, in 1-3 % (w/v) NaCl and at pH 7-7.5. The strain was facultatively anaerobic and showed a broader range of carbohydrate use than other species in the genus Motilimonas. Q-8 was the sole respiratory quinone and the major fatty acids (>10 %) were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and C16 : 0. The polar lipid profile included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyglycerol and several unidentified lipids. The G+C content of the genomic DNA was 44.2 mol%. Average nucleotide identity and DNA-DNA hybridization data were consistent with assignment to a separate species. Based on the phylogenetic and genomic-based analyses, as well as physiological and biochemical characteristics, we propose that strain MKS20T (=DSM 109936T, MCCC 1K04071T) represents a new species of the genus Motilimonas, with the name Motilimonas cestriensis sp. nov.

3.
Life (Basel) ; 12(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35455014

RESUMEN

Water present on the surface of early Mars (>3.0 Ga) may have been habitable. Characterising analogue environments and investigating the aspects of their microbiome best suited for growth under simulated martian chemical conditions is key to understanding potential habitability. Experiments were conducted to investigate the viability of microbes from a Mars analogue environment, Colour Peak Springs (Axel Heiberg Island, Canadian High Arctic), under simulated martian chemistries. The fluid was designed to emulate waters thought to be typical of the late Noachian, in combination with regolith simulant material based on two distinct martian geologies. These experiments were performed with a microbial community from Colour Peak Springs sediment. The impact on the microbes was assessed by cell counting and 16S rRNA gene amplicon sequencing. Changes in fluid chemistries were tested using ICP-OES. Both chemistries were shown to be habitable, with growth in both chemistries. Microbial communities exhibited distinct growth dynamics and taxonomic composition, comprised of sulfur-cycling bacteria, represented by either sulfate-reducing or sulfur-oxidising bacteria, and additional heterotrophic halophiles. Our data support the identification of Colour Peak Springs as an analogue for former martian environments, with a specific subsection of the biota able to survive under more accurate proxies for martian chemistries.

4.
Life (Basel) ; 12(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35054406

RESUMEN

The waters that were present on early Mars may have been habitable. Characterising environments analogous to these waters and investigating the viability of their microbes under simulated martian chemical conditions is key to developing hypotheses on this habitability and potential biosignature formation. In this study, we examined the viability of microbes from the Anderton Brine Springs (United Kingdom) under simulated martian chemistries designed to simulate the chemical conditions of water that may have existed during the Hesperian. Associated changes in the fluid chemistries were also tested using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The tested Hesperian fluid chemistries were shown to be habitable, supporting the growth of all of the Anderton Brine Spring isolates. However, inter and intra-generic variation was observed both in the ability of the isolates to tolerate more concentrated fluids and in their impact on the fluid chemistry. Therefore, whilst this study shows microbes from fluctuating brines can survive and grow in simulated martian water chemistry, further investigations are required to further define the potential habitability under past martian conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA