Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Development ; 145(24)2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30446627

RESUMEN

Apical constriction regulates epithelial morphogenesis during embryonic development, but how this process is controlled is not understood completely. Here, we identify a Rho guanine nucleotide exchange factor (GEF) gene plekhg5 as an essential regulator of apical constriction of bottle cells during Xenopus gastrulation. plekhg5 is expressed in the blastopore lip and its expression is sufficient to induce ectopic bottle cells in epithelia of different germ layers in a Rho-dependent manner. This activity is not shared by arhgef3, which encodes another organizer-specific RhoGEF. Plekhg5 protein is localized in the apical cell cortex via its pleckstrin homology domain, and the GEF activity enhances its apical recruitment. Plekhg5 induces apical actomyosin accumulation and cell elongation. Knockdown of plekhg5 inhibits activin-induced bottle cell formation and endogenous blastopore lip formation in gastrulating frog embryos. Apical accumulation of actomyosin, apical constriction and bottle cell formation fail to occur in these embryos. Taken together, our data indicate that transcriptional regulation of plekhg5 expression at the blastopore lip determines bottle cell morphology via local polarized activation of Rho by Plekhg5, which stimulates apical actomyosin activity to induce apical constriction.


Asunto(s)
Polaridad Celular , Gastrulación , Factores de Intercambio de Guanina Nucleótido/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Activinas/metabolismo , Actomiosina/metabolismo , Animales , Citoesqueleto/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Gástrula/embriología , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Movimiento , Proteínas de Xenopus/genética , Xenopus laevis/genética
2.
Dev Growth Differ ; 63(8): 429-438, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34464453

RESUMEN

We describe a method of generating three-notochord explants to analyze the cell movements of convergent extension (CE) during Xenopus laevis gastrulation and neurulation. This method uses standard microsurgical techniques under a fluorescence stereomicroscope to combine notochordal sectors of gastrulae, side by side (lateral surfaces apposed) into a single explant. Three-notochord explants cultured on bovine serum albumin (BSA)-coated glass converged mediolaterally and extended in the anterior-posterior direction. The individual notochordal cells showed the mediolaterally oriented, bipolar tractional motility and the resulting mediolaterally oriented cell intercalation characteristic of CE, thereby reproducing both the in vivo tissue and the cell movements in an explant. Image analysis of three-notochord explants reveals the effects of overexpressions or knockdowns of genes, of manipulation of the extracellular matrix, and of exposure to chemical reagents on morphogenesis during gastrulation and neurulation, compared with control explants. Moreover, since three-notochord explants provide two zones of cell intercalation between notochords, individual cell behaviors between notochords of different characteristics and experimental treatments can be observed at the same time.


Asunto(s)
Gástrula , Notocorda , Animales , Movimiento Celular , Morfogénesis , Xenopus laevis
3.
Development ; 143(4): 715-27, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26884399

RESUMEN

Vertebrate embryos undergo dramatic shape changes at gastrulation that require locally produced and anisotropically applied forces, yet how these forces are produced and transmitted across tissues remains unclear. We show that depletion of myosin regulatory light chain (RLC) levels in the embryo blocks force generation at gastrulation through two distinct mechanisms: destabilizing the myosin II (MII) hexameric complex and inhibiting MII contractility. Molecular dissection of these two mechanisms demonstrates that normal convergence force generation requires MII contractility and we identify a set of molecular phenotypes correlated with both this failure of convergence force generation in explants and of blastopore closure in whole embryos. These include reduced rates of actin movement, alterations in C-cadherin dynamics and a reduction in the number of polarized lamellipodia on intercalating cells. By examining the spatial relationship between C-cadherin and actomyosin we also find evidence for formation of transcellular linear arrays incorporating these proteins that could transmit mediolaterally oriented tensional forces. These data combine to suggest a multistep model to explain how cell intercalation can occur against a force gradient to generate axial extension forces. First, polarized lamellipodia extend mediolaterally and make new C-cadherin-based contacts with neighboring mesodermal cell bodies. Second, lamellipodial flow of actin coalesces into a tension-bearing, MII-contractility-dependent node-and-cable actin network in the cell body cortex. And third, this actomyosin network contracts to generate mediolateral convergence forces in the context of these transcellular arrays.


Asunto(s)
Gastrulación , Modelos Moleculares , Xenopus laevis/embriología , Xenopus laevis/fisiología , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Fenómenos Biomecánicos/fisiología , Cadherinas/metabolismo , Polaridad Celular , Embrión no Mamífero/metabolismo , Modelos Biológicos , Morfogénesis , Miosina Tipo II/metabolismo , Notocorda/citología , Fenotipo , Fosforilación , Seudópodos/metabolismo , Xenopus laevis/metabolismo
4.
Dev Biol ; 364(1): 42-55, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22305799

RESUMEN

Coordinated cell movements are crucial for vertebrate gastrulation and are controlled by multiple signals. Although many factors are shown to mediate non-canonical Wnt pathways to regulate cell polarity and intercalation during gastrulation, signaling molecules acting in other pathways are less investigated and the connections between various signals and cytoskeleton are not well understood. In this study, we show that the cytoplasmic tyrosine kinase Arg modulates gastrulation movements through control of actin remodeling. Arg is expressed in the dorsal mesoderm at the onset of gastrulation, and both gain- and loss-of-function of Arg disrupted axial development in Xenopus embryos. Arg controlled migration of anterior mesendoderm, influenced cell decision on individual versus collective migration, and modulated spreading and protrusive activities of anterior mesendodermal cells. Arg also regulated convergent extension of the trunk mesoderm by influencing cell intercalation behaviors. Arg modulated actin organization to control dynamic F-actin distribution at the cell-cell contact or in membrane protrusions. The functions of Arg required an intact tyrosine kinase domain but not the actin-binding motifs in its carboxyl terminus. Arg acted downstream of receptor tyrosine kinases to regulate phosphorylation of endogenous CrkII and paxillin, adaptor proteins involved in activation of Rho family GTPases and actin reorganization. Our data demonstrate that Arg is a crucial cytoplasmic signaling molecule that controls dynamic actin remodeling and mesodermal cell behaviors during Xenopus gastrulation.


Asunto(s)
Actinas/metabolismo , Citoplasma/enzimología , Embrión no Mamífero/enzimología , Gastrulación , Proteínas Tirosina Quinasas/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Animales , Arginina/genética , Arginina/metabolismo , Cadherinas/metabolismo , Adhesión Celular , Linaje de la Célula , Movimiento Celular , Embrión no Mamífero/citología , Humanos , Fosforilación , Unión Proteica , Proteínas Tirosina Quinasas/genética , Xenopus laevis/genética
5.
Nature ; 449(7165): 1049-52, 2007 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-17928866

RESUMEN

During gastrulation, a single epithelial cell layer, the ectoderm, generates two others: the mesoderm and the endoderm. In amniotes (birds and mammals), mesendoderm formation occurs through an axial midline structure, the primitive streak, the formation of which is preceded by massive 'polonaise' movements of ectoderm cells. The mechanisms controlling these processes are unknown. Here, using multi-photon time-lapse microscopy of chick (Gallus gallus) embryos, we reveal a medio-lateral cell intercalation confined to the ectodermal subdomain where the streak will later form. This intercalation event differs from the convergent extension movements of the mesoderm described in fish and amphibians (anamniotes): it occurs before gastrulation and within a tight columnar epithelium. Fibroblast growth factor from the extraembryonic endoderm (hypoblast, a cell layer unique to amniotes) directs the expression of Wnt planar-cell-polarity pathway components to the intercalation domain. Disruption of this Wnt pathway causes the mesendoderm to form peripherally, as in anamniotes. We propose that the amniote primitive streak evolved from the ancestral blastopore by acquisition of an additional medio-lateral intercalation event, preceding gastrulation and acting independently of mesendoderm formation to position the primitive streak at the midline.


Asunto(s)
Células Epiteliales/citología , Gastrulación , Línea Primitiva/citología , Línea Primitiva/embriología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Movimiento Celular , Polaridad Celular , Embrión de Pollo , Proteínas Dishevelled , Factores de Crecimiento de Fibroblastos/metabolismo , Mesodermo/citología , Mesodermo/embriología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 107(45): 19344-9, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20974966

RESUMEN

A transcriptional corepressor, Xenopus furry (Xfurry), is expressed in the chordamesodermal region and induces secondary dorsal axes when overexpressed on the ventral side of the embryo. The N-terminal furry domain functions as a repressor, and the C-terminal leucine zipper (LZ) motifs /coiled-coil structure, found only in vertebrate homologs, contributes to the nuclear localization. The engrailed repressor (enR)+LZ repressor construct, which has properties similar to Xfurry, induced several chordamesodermal genes. In contrast, an antisense morpholino oligonucleotide, Xfurry-MO, and the activating construct, herpes simplex virus protein (VP16)+LZ, had effects opposite those of Xfurry overexpression. Because blocking protein synthesis with cycloheximide superinduced several Xfurry transcriptional targets, and because expression of enR+LZ induced such genes under cycloheximide treatment, we analyzed the role of an Xfurry transcriptional target, microRNA miR-15. Cycloheximide reduced the expression of primary miR-15 (pri-miR-15), whereas miR-15 reduced the expression of genes superinduced by cycloheximide treatment. These results show that Xfurry regulates chordamesodermal genes by contributing to repression of pretranscriptional gene silencing by miR-15.


Asunto(s)
Silenciador del Gen , MicroARNs/genética , Proteínas Represoras/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Transporte Activo de Núcleo Celular , Animales , Cicloheximida/farmacología , Regulación de la Expresión Génica , Notocorda , Proteínas de Xenopus/fisiología
7.
Mol Biol Cell ; 34(7): ar64, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37043306

RESUMEN

Apical constriction results in apical surface reduction in epithelial cells and is a widely used mechanism for epithelial morphogenesis. Both medioapical and junctional actomyosin remodeling are involved in apical constriction, but the deployment of medial versus junctional actomyosin and their genetic regulation in vertebrate embryonic development have not been fully described. In this study, we investigate actomyosin dynamics and their regulation by the RhoGEF protein Plekhg5 in Xenopus bottle cells. Using live imaging and quantitative image analysis, we show that bottle cells assume different shapes, with rounding bottle cells constricting earlier in small clusters followed by fusiform bottle cells forming between the clusters. Both medioapical and junctional actomyosin signals increase as surface area decreases, though correlation of apical constriction with medioapical actomyosin localization appears to be stronger. F-actin bundles perpendicular to the apical surface form in constricted cells, which may correspond to microvilli previously observed in the apical membrane. Knockdown of plekhg5 disrupts medioapical and junctional actomyosin activity and apical constriction but does not affect initial F-actin dynamics. Taking the results together, our study reveals distinct cell morphologies, uncovers actomyosin behaviors, and demonstrates the crucial role of a RhoGEF protein in controlling actomyosin dynamics during apical constriction of bottle cells in Xenopus gastrulation.


Asunto(s)
Actomiosina , Gastrulación , Animales , Actomiosina/metabolismo , Xenopus laevis/metabolismo , Actinas/metabolismo , Constricción , Morfogénesis , Factores de Intercambio de Guanina Nucleótido Rho
8.
Curr Opin Cell Biol ; 17(5): 533-41, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16099638

RESUMEN

As the gateway to shaping the body plan, gastrulation is an important problem in developmental biology, and recent advances in cell biology have overcome some of the limitations of past approaches to learning how genes control reshaping of embryonic tissues. The use of fluorescent tracer dyes and live cell imaging methods to evaluate at the cellular level the results of genetic and molecular manipulations has advanced our understanding of the cell motility and contact behavior underlying tissue remodeling during gastrulation.


Asunto(s)
Movimiento Celular/fisiología , Gástrula/fisiología , Animales , Tipificación del Cuerpo/fisiología , Quimiotaxis/fisiología , Endodermo/fisiología , Gástrula/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Mesodermo/fisiología , Modelos Biológicos , Morfogénesis , Transducción de Señal/fisiología
9.
BMC Biol ; 9: 90, 2011 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-22206439

RESUMEN

The bending of cell sheets plays a major role in multicellular embryonic morphogenesis. Recent advances are leading to a deeper understanding of how the biophysical properties and the force-producing behaviors of cells are regulated, and how these forces are integrated across cell sheets during bending. We review work that shows that the dynamic balance of apical versus basolateral cortical tension controls specific aspects of invagination of epithelial sheets, and recent evidence that tissue expansion by growth contributes to neural retinal invagination in a stem cell-derived, self-organizing system. Of special interest is the detailed analysis of the type B inversion in Volvox reported in BMC Biology by Höhn and Hallmann, as this is a system that promises to be particularly instructive in understanding morphogenesis of any monolayered spheroid system.


Asunto(s)
Epitelio/embriología , Morfogénesis , Volvox/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Modelos Biológicos
10.
Elife ; 112022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35404236

RESUMEN

The morphogenic process of convergent thickening (CT) was originally described as the mediolateral convergence and radial thickening of the explanted ventral involuting marginal zone (IMZ) of Xenopus gastrulae (Keller and Danilchik, 1988). Here, we show that CT is expressed in all sectors of the pre-involution IMZ, which transitions to expressing convergent extension (CE) after involution. CT occurs without CE and drives symmetric blastopore closure in ventralized embryos. Assays of tissue affinity and tissue surface tension measurements suggest CT is driven by increased interfacial tension between the deep IMZ and the overlying epithelium. The resulting minimization of deep IMZ surface area drives a tendency to shorten the mediolateral (circumblastoporal) aspect of the IMZ, thereby generating tensile force contributing to blastopore closure (Shook et al., 2018). These results establish CT as an independent force-generating process of evolutionary significance and provide the first clear example of an oriented, tensile force generated by an isotropic, Holtfreterian/Steinbergian tissue affinity change.


Asunto(s)
Evolución Biológica , Gástrula , Animales , Movimiento Celular , Morfogénesis , Xenopus laevis
11.
Dev Biol ; 327(2): 327-38, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19121300

RESUMEN

Vertebrate neural tube formation involves two distinct morphogenetic events--convergent extension (CE) driven by mediolateral cell intercalation, and bending of the neural plate driven largely by cellular apical constriction. However, the cellular and molecular biomechanics of these processes are not understood. Here, using tissue-targeting techniques, we show that the myosin IIB motor protein complex is essential for both these processes, as well as for conferring resistance to deformation to the neural plate tissue. We show that myosin IIB is required for actin-cytoskeletal organization in both superficial and deep layers of the Xenopus neural plate. In the superficial layer, myosin IIB is needed for apical actin accumulation, which underlies constriction of the neuroepithelial cells, and that ultimately drive neural plate bending, whereas in the deep neural cells myosin IIB organizes a cortical actin cytoskeleton, which we describe for the first time, and that is necessary for both normal neural cell cortical tension and shape and for autonomous CE of the neural tissue. We also show that myosin IIB is required for resistance to deformation ("stiffness") in the neural plate, indicating that the cytoskeleton-organizing roles of this protein translate in regulation of the biomechanical properties of the neural plate at the tissue-level.


Asunto(s)
Morfogénesis/fisiología , Tubo Neural/fisiología , Neurulación/fisiología , Miosina Tipo IIB no Muscular/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis , Actinas/metabolismo , Animales , Movimiento Celular , Forma de la Célula , Citoesqueleto/metabolismo , Tubo Neural/anatomía & histología , Miosina Tipo IIB no Muscular/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología
13.
Int J Dev Biol ; 52(4): 371-5, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18415937

RESUMEN

The TATA box-binding protein (TBP) is an essential component of transcription initiation complexes of all three eukaryotic RNA polymerases. Recent knockdown studies revealed that basic transcription factors are essential not only for gene transcription but also for regulating specific gene expression. However, the mechanism of and the effect by regulation of TBP expression are unknown during early embryogenesis. Here we show that the alteration of concentration of each TBP-type gene affected mutually one another's expression, suggesting that an optimal ratio of concentrations of TBP-type genes induce expression of specific genes.


Asunto(s)
Notocorda/embriología , Proteína de Unión a TATA-Box/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Proteínas Fluorescentes Verdes/genética
14.
Curr Biol ; 15(8): 787-93, 2005 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-15854914

RESUMEN

The noncanonical wnt/planar cell polarity (PCP) pathway [1] regulates the mediolaterally (planarly) polarized cell protrusive activity and intercalation that drives the convergent extension movements of vertebrate gastrulation [2], yet the underlying mechanism is unknown. We report that perturbing expression of Xenopus PCP genes, Strabismus (Xstbm), Frizzled (Xfz7), and Prickle (Xpk), disrupts radially polarized fibronectin fibril assembly on mesodermal tissue surfaces, mediolaterally polarized motility, and intercalation. Polarized motility is restored in Xpk-perturbed explants but not in Xstbm- or Xfz7-perturbed explants cultured on fibronectin surfaces. The PCP complex, including Xpk, first regulates polarized surface assembly of the fibronectin matrix, which is necessary for mediolaterally polarized motility, and then, without Xpk, has an additional and necessary function in polarizing motility. These results show that the PCP complex regulates several cell polarities (radial, planar) and several processes (matrix deposition, motility), by indirect and direct mechanisms, and acts in several modes, either with all or a subset of its components, during vertebrate morphogenesis.


Asunto(s)
Polaridad Celular/genética , Matriz Extracelular/metabolismo , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal/fisiología , Xenopus/embriología , Animales , Extensiones de la Superficie Celular/metabolismo , Fibronectinas/metabolismo , Colorantes Fluorescentes , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Compuestos Orgánicos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Xenopus/metabolismo
15.
Phys Biol ; 5(1): 015007, 2008 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-18403829

RESUMEN

We discuss the physical aspects of the morphogenic process of convergence (narrowing) and extension (lengthening) of tissues by cell intercalation. These movements, often referred to as 'convergent extension', occur in both epithelial and mesenchymal tissues during embryogenesis and organogenesis of invertebrates and vertebrates, and they play large roles in shaping the body plan during development. Our focus is on the presumptive mesodermal and neural tissues of the Xenopus (frog) embryo, tissues for which some physical measurements have been made. We discuss the physical aspects of how polarized cell motility, oriented along future tissue axes, generate the forces that drive oriented cell intercalation and how this intercalation results in convergence and extension or convergence and thickening of the tissue. Our goal is to identify aspects of these morphogenic movements for further biophysical, molecular and cell biological, and modeling studies.


Asunto(s)
Fenómenos Biomecánicos/métodos , Tipificación del Cuerpo/fisiología , Embrión no Mamífero , Desarrollo Embrionario/fisiología , Modelos Biológicos , Animales , Movimiento Celular/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Xenopus laevis/embriología
16.
Dev Cell ; 45(3): 316-330.e4, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29738711

RESUMEN

The Xenopus left-right organizer (LRO) breaks symmetry along the left-right axis of the early embryo by producing and sensing directed ciliary flow as a patterning cue. To carry out this process, the LRO contains different ciliated cell types that vary in cilia length, whether they are motile or sensory, and how they position their cilia along the anterior-posterior (A-P) planar axis. Here, we show that these different cilia features are specified in the prospective LRO during gastrulation, based on anisotropic mechanical strain that is oriented along the A-P axis, and graded in levels along the medial-lateral axis. Strain instructs ciliated cell differentiation by acting on a mesodermal prepattern present at blastula stages, involving foxj1. We propose that differential strain is a graded, developmental cue, linking the establishment of an A-P planar axis to cilia length, motility, and planar location during formation of the Xenopus LRO.


Asunto(s)
Tipificación del Cuerpo/fisiología , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Cilios/fisiología , Organizadores Embrionarios/fisiología , Estrés Fisiológico/fisiología , Xenopus laevis/fisiología , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Femenino , Lateralidad Funcional , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Masculino , Mesodermo/citología , Mesodermo/fisiología , Transducción de Señal , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
17.
Cell Rep ; 23(9): 2758-2769, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29847804

RESUMEN

Although aneuploidy is found in the majority of tumors, the degree of aneuploidy varies widely. It is unclear how cancer cells become aneuploid or how highly aneuploid tumors are different from those of more normal ploidy. We developed a simple computational method that measures the degree of aneuploidy or structural rearrangements of large chromosome regions of 522 human breast tumors from The Cancer Genome Atlas (TCGA). Highly aneuploid tumors overexpress activators of mitotic transcription and the genes encoding proteins that segregate chromosomes. Overexpression of three mitotic transcriptional regulators, E2F1, MYBL2, and FOXM1, is sufficient to increase the rate of lagging anaphase chromosomes in a non-transformed vertebrate tissue, demonstrating that this event can initiate aneuploidy. Highly aneuploid human breast tumors are also enriched in TP53 mutations. TP53 mutations co-associate with the overexpression of mitotic transcriptional activators, suggesting that these events work together to provide fitness to breast tumors.


Asunto(s)
Aneuploidia , Neoplasias de la Mama/genética , Anafase/genética , Animales , Neoplasias de la Mama/patología , Inestabilidad Cromosómica , Cromosomas Humanos/genética , Embrión no Mamífero/metabolismo , Femenino , Frecuencia de los Genes/genética , Humanos , Mitosis/genética , Modelos Genéticos , Mutación/genética , Fenotipo , Factores de Transcripción/metabolismo , Transcripción Genética , Xenopus/embriología
18.
Dev Cell ; 37(3): 213-25, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27165554

RESUMEN

Radial intercalation is a fundamental process responsible for the thinning of multilayered tissues during large-scale morphogenesis; however, its molecular mechanism has remained elusive. Using amphibian epiboly, the thinning and spreading of the animal hemisphere during gastrulation, here we provide evidence that radial intercalation is driven by chemotaxis of cells toward the external layer of the tissue. This role of chemotaxis in tissue spreading and thinning is unlike its typical role associated with large-distance directional movement of cells. We identify the chemoattractant as the complement component C3a, a factor normally linked with the immune system. The mechanism is explored by computational modeling and tested in vivo, ex vivo, and in vitro. This mechanism is robust against fluctuations of chemoattractant levels and expression patterns and explains expansion during epiboly. This study provides insight into the fundamental process of radial intercalation and could be applied to a wide range of morphogenetic events.


Asunto(s)
Morfogénesis , Xenopus laevis/embriología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Complemento C3a/metabolismo , Simulación por Computador , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/embriología , Morfogénesis/efectos de los fármacos , Receptores de Complemento/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Mech Dev ; 120(11): 1351-83, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14623443

RESUMEN

Epithelial-mesenchymal transitions (EMTs) are an important mechanism for reorganizing germ layers and tissues during embryonic development. They have both a morphogenic function in shaping the embryo and a patterning function in bringing about new juxtapositions of tissues, which allow further inductive patterning events to occur [Genesis 28 (2000) 23]. Whereas the mechanics of EMT in cultured cells is relatively well understood [reviewed in Biochem. Pharmacol. 60 (2000) 1091; Cell 105 (2001) 425; Bioessays 23 (2001) 912], surprisingly little is known about EMTs during embryonic development [reviewed in Acta Anat. 154 (1995) 8], and nowhere is the entire process well characterized within a single species. Embryonic (developmental) EMTs have properties that are not seen or are not obvious in culture systems or cancer cells. Developmental EMTs are part of a specific differentiative path and occur at a particular time and place. In some types of embryos, a relatively intact epithelium must be maintained while some of its cells de-epithelialize during EMT. In most cases de-epithelialization (loss of apical junctions) must occur in an orderly, patterned fashion in order that the proper morphogenesis results. Interestingly, we find that de-epithelialization is not always necessarily tightly coupled to the expression of mesenchymal phenotypes.Developmental EMTs are multi-step processes, though the interdependence and obligate order of the steps is not clear. The particulars of the process vary between tissues, species, and specific embryonic context. We will focus on 'primary' developmental EMTs, which are those occurring in the initial epiblast or embryonic epithelium. 'Secondary' developmental EMT events are those occurring in epithelial tissues that have reassembled within the embryo from mesenchymal cells. We will review and compare a number of primary EMT events from across the metazoans, and point out some of the many open questions that remain in this field.


Asunto(s)
Epitelio/embriología , Epitelio/patología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/patología , Animales , Tipificación del Cuerpo , Cadherinas/metabolismo , Caenorhabditis elegans , Adhesión Celular , División Celular , Embrión de Pollo , Citoesqueleto/metabolismo , Gástrula/metabolismo , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Fenotipo , Erizos de Mar , Factores de Tiempo , Xenopus
20.
Mech Dev ; 116(1-2): 183-6, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12128221

RESUMEN

We have cloned Xenopus orthologues of the Drosophila planar cell polarity (PCP) gene Prickle. Xenopus Prickle (XPk) is expressed in tissues at the dorsal midline during gastrulation and early neurulation. XPk is later expressed in a segmental pattern in the presomitic mesoderm and then in recently formed somites. XPk is also expressed in the tailbud, pronephric duct, retina, and the otic vesicle. The complex expression pattern of XPk suggests that PCP signaling is used in a diverse array of developmental processes in vertebrate embryos.


Asunto(s)
Proteínas de Unión al ADN/genética , Xenopus/embriología , Xenopus/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Polaridad Celular/genética , Clonación Molecular , ADN/genética , Proteínas de Unión al ADN/química , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Genes de Insecto , Hibridación in Situ , Proteínas con Dominio LIM , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA