Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 7(6): e1002122, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21695246

RESUMEN

Eukaryotic nuclei contain regions of differentially staining chromatin (heterochromatin), which remain condensed throughout the cell cycle and are largely transcriptionally silent. RNAi knockdown of the highly conserved heterochromatin protein HP1 in Drosophila was previously shown to preferentially reduce male viability. Here we report a similar phenotype for the telomeric partner of HP1, HOAP, and roles for both proteins in regulating the Drosophila sex determination pathway. Specifically, these proteins regulate the critical decision in this pathway, firing of the establishment promoter of the masterswitch gene, Sex-lethal (Sxl). Female-specific activation of this promoter, Sxl(Pe), is essential to females, as it provides SXL protein to initiate the productive female-specific splicing of later Sxl transcripts, which are transcribed from the maintenance promoter (Sxl(Pm)) in both sexes. HOAP mutants show inappropriate Sxl(Pe) firing in males and the concomitant inappropriate splicing of Sxl(Pm)-derived transcripts, while females show premature firing of Sxl(Pe). HP1 mutants, by contrast, display Sxl(Pm) splicing defects in both sexes. Chromatin immunoprecipitation assays show both proteins are associated with Sxl(Pe) sequences. In embryos from HP1 mutant mothers and Sxl mutant fathers, female viability and RNA polymerase II recruitment to Sxl(Pe) are severely compromised. Our genetic and biochemical assays indicate a repressing activity for HOAP and both activating and repressing roles for HP1 at Sxl(Pe).


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Proteínas de Drosophila/fisiología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Heterocromatina/genética , Transcripción Genética , Animales , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Heterocromatina/metabolismo , Masculino , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Procesos de Determinación del Sexo
2.
Prim Care ; 49(3): 455-468, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36153086

RESUMEN

Understanding the risks for substance use disorders (SUDs) and how to diagnose and treat is essential to the safe and effective treatment of patients with chronic noncancer pain (CNCP). Because of the common neurologic pathways underlying addiction and chronic pain and common comorbid mental health and psychosocial challenges, these conditions should be treated concurrently. Depending on setting and comfort level of the provider, primary care clinicians may have the resources to provide office-based treatment or may consider referral to specialty treatment. An awareness of the stigma facing patients with both CNCP and SUD is important to providing compassionate, patient-centered care.


Asunto(s)
Dolor Crónico , Trastornos Relacionados con Sustancias , Analgésicos Opioides/uso terapéutico , Dolor Crónico/epidemiología , Dolor Crónico/terapia , Comorbilidad , Humanos , Trastornos Relacionados con Sustancias/epidemiología , Trastornos Relacionados con Sustancias/terapia
3.
Nat Cell Biol ; 5(1): 82-4, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12510197

RESUMEN

HOAP (HP1/ORC-associated protein) has recently been isolated from Drosophila melanogaster embryos as part of a cytoplasmic complex that contains heterochromatin protein 1 (HP1) and the origin recognition complex subunit 2 (ORC2). Here, we show that caravaggio, a mutation in the HOAP-encoding gene, causes extensive telomere-telomere fusions in larval brain cells, indicating that HOAP is required for telomere capping. Our analyses indicate that HOAP is specifically enriched at mitotic chromosome telomeres, and strongly suggest that HP1 and HOAP form a telomere-capping complex that does not contain ORC2.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Mapeo Cromosómico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Telómero/fisiología , Animales , Drosophila melanogaster/genética , Embrión no Mamífero/fisiología , Embrión no Mamífero/ultraestructura , Telómero/ultraestructura
4.
J Cell Biol ; 161(4): 671-2, 2003 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-12771122

RESUMEN

Heterochromatin is defined as regions of compact chromatin that persist throughout the cell cycle (Heitz, 1928). The earliest cytological observations of heterochromatin were followed by ribonucleotide labeling experiments that showed it to be transcriptionally inert relative to the more typical euchromatic regions that decondense during interphase. Genetic studies of rearrangements that place euchromatic genes next to blocks of heterochromatin also pointed out the repressive nature of heterochromatin (Grigliatti, 1991; and references therein). The discovery of the heterochromatin-enriched protein heterochromatin protein 1 (HP1)**Abbreviation used in this paper: HP1, heterochromatin protein 1. by Elgin and co-workers in the mid-1980s suggested that the distinct cytological features of this chromatin may be related to its unique nucleoprotein composition (James and Elgin, 1986; James et al., 1989). HP1 immunostaining on polytene chromosomes from Drosophila larval salivary glands was used to show enrichment of the protein in pericentric heterochromatin. Since that initial discovery, HP1 homologues have been found in species ranging from fission yeast to humans where it is associated with gene silencing (Eissenberg and Elgin, 2000; and references therein). A number of euchromatic sites of localization were also reported in this original study. It has been generally assumed that these sites might constitute euchromatic sites of transcriptional repression by HP1. Indeed, several genes located at one of these sites (cytological region 31) have increased transcript levels in mutants for HP1 (Hwang et al., 2001).


Asunto(s)
Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , ARN/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Animales , Cromatina/metabolismo , Homólogo de la Proteína Chromobox 5 , Humanos , Transcripción Genética
5.
J Cell Biol ; 159(3): 397-402, 2002 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-12417578

RESUMEN

Drosophila telomeres are formed by two non-LTR retrotransposons, HeT-A and TART, which transpose only to chromosome ends. Successive transpositions of these telomeric elements yield arrays that are functionally equivalent to the arrays generated by telomerase in other organisms. In contrast, other Drosophila non-LTR retrotransposons transpose widely through gene-rich regions, but not to ends. The two telomeric elements encode very similar Gag proteins, suggesting that Gag may be involved in their unique targeting to chromosome ends. To test the intrinsic potential of these Gag proteins for targeting, we tagged the coding sequences with sequence of GFP and expressed the constructs in transiently transfected Drosophila-cultured cells. Gag proteins from both elements are efficiently transported into the nucleus where the protein from one element, HeT-A, forms structures associated with chromosome ends in interphase nuclei. Gag from the second element, TART, moves into telomere-associated structures only when coexpressed with HeT-A Gag. The results suggest that these Gag proteins are capable of delivering the retrotransposons to telomeres, although TART requires assistance from HeT-A. They also imply a symbiotic relationship between the two elements, with HeT-A Gag directing the telomere-specific targeting of the elements, whereas TART provides reverse transcriptase for transposition.


Asunto(s)
Elementos Transponibles de ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Productos del Gen gag , Proteínas de Insectos/metabolismo , Retroelementos/genética , Telómero/metabolismo , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas Fluorescentes Verdes , Indicadores y Reactivos/metabolismo , Proteínas de Insectos/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Telómero/genética
6.
Chromosoma ; 113(7): 370-84, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15592864

RESUMEN

Heterochromatin Protein 1 (HP1) is a conserved component of the highly compact chromatin found at centromeres and telomeres. A conserved feature of the protein is multiple phosphorylation. Hyper-phosphorylation of HP1 accompanies the assembly of cytologically distinct heterochromatin during early embryogenesis. Hypo-phosphorylated HP1 is associated with the DNA-binding activities of the origin recognition complex (ORC) and an HMG-like HP1/ORC-Associated Protein (HOAP). Perturbations in HP1 localization in pericentric and telomeric heterochromatin in mutants for Drosophila ORC2 and HOAP, respectively, indicate roles for these HP1 phosphoisoforms in heterochromatin assembly also. To elucidate the roles of hypo- and hyper-phosphophorylated HP1 in heterochromatin assembly, we have mutated consensus Protein Kinase-A phosphorylation sites in the HP1 hinge domain and examined the mutant proteins for distinct in vitro and in vivo activities. Mutations designed to mimic hyper-phosphorylation render the protein incapable of binding HOAP and the DmORC1 subunit but confer enhanced homo-dimerization and lysine 9-methylated histone H3-binding to the protein. Mutations rendering the protein unphosphorylatable, by contrast, do not affect homo-dimerization or binding to lysine 9-di-methylated histone H3, HOAP, or DmORC1 but do confer novel DmORC2-binding activity to the protein. This mutant protein is ectopically localized throughout the chromosomes when overexpressed in vivo in the presence of a full dose of DmORC2. This ectopic targeting is accompanied by ectopic targeting of lysine 9 tri-methylated histone H3. The distinct activities of these mutant proteins could reflect distinct roles for HP1 phosphoisoforms in heterochromatin structure and function.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Drosophila melanogaster/metabolismo , Mutación/genética , Secuencia de Aminoácidos , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dimerización , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Lisina/química , Datos de Secuencia Molecular , Complejo de Reconocimiento del Origen , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
7.
Proc Natl Acad Sci U S A ; 102(42): 15167-72, 2005 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-16203987

RESUMEN

In higher eukaryotes, the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) checkpoint kinases play distinct, but partially overlapping, roles in DNA damage response. Yet their interrelated function has not been defined for telomere maintenance. We discover in Drosophila that the two proteins control partially redundant pathways for telomere protection: the loss of ATM leads to the fusion of some telomeres, whereas the loss of both ATM and ATR renders all telomeres susceptible to fusion. The ATM-controlled pathway includes the Mre11 and Nijmegen breakage syndrome complex but not the Chk2 kinase, whereas the ATR-regulated pathway includes its partner ATR-interacting protein but not the Chk1 kinase. This finding suggests that ATM and ATR regulate different molecular events at the telomeres compared with the sites of DNA damage. This compensatory relationship between ATM and ATR is remarkably similar to that observed in yeast despite the fact that the biochemistry of telomere elongation is completely different in the two model systems. We provide evidence suggesting that both the loading of telomere capping proteins and normal telomeric silencing requires ATM and ATR in Drosophila and propose that ATM and ATR protect telomere integrity by safeguarding chromatin architecture that favors the loading of telomere-elongating, capping, and silencing proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Serina-Treonina Quinasas/metabolismo , Telómero/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Daño del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Femenino , Silenciador del Gen , Masculino , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Supresoras de Tumor/genética
8.
Genetica ; 117(2-3): 127-34, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12723692

RESUMEN

We have used the highly conserved heterochromatin component, heterochromatin protein 1 (HP1), as a molecular tag for purifying other protein components of Drosophila heterochromatin. A complex of HP1 associated with the origin recognition complex (ORC) and an HP1/ORC-associated protein (HOAP) was purified from the maternally loaded cytoplasm of early Drosophila embryo. We propose that the DNA-binding activities of ORC and HOAP function to recruit underphosphorylatedisoforms of HP1 to sites of heterochromatin nucleation. The roles of highly phosphorylated HP1, other DNA-binding proteins known to interact with HP1, and histone modifying activities in heterochromatin assembly are also addressed.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Drosophila/genética , Heterocromatina/genética , Animales , Homólogo de la Proteína Chromobox 5 , Mapeo Cromosómico , Proteínas de Drosophila/genética , Modelos Genéticos , Complejo de Reconocimiento del Origen
9.
J Biol Chem ; 278(36): 34491-8, 2003 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-12826664

RESUMEN

Association of the highly conserved heterochromatin protein, HP1, with the specialized chromatin of centromeres and telomeres requires binding to a specific histone H3 modification of methylation on lysine 9. This modification is catalyzed by the Drosophila Su(var)3-9 gene product and its homologues. Specific DNA binding activities are also likely to be required for targeting this activity along with HP1 to specific chromosomal regions. The Drosophila HOAP protein is a DNA-binding protein that was identified as a component of a multiprotein complex of HP1 containing Drosophila origin recognition complex (ORC) subunits in the early Drosophila embryo. Here we show direct physical interactions between the HOAP protein and HP1 and specific ORC subunits. Two additional HP1-like proteins (HP1b and HP1c) were recently identified in Drosophila, and the unique chromosomal distribution of each isoform is determined by two independently acting HP1 domains (hinge and chromoshadow domain) (47). We find heterochromatin protein 1/origin recognition complex-associated protein (HOAP) to interact specifically with the originally described predominantly heterochromatic HP1a protein. Both the hinge and chromoshadow domains of HP1a are required for its interaction with HOAP, and a novel peptide repeat located in the carboxyl terminus of the HOAP protein is required for the interaction with the HP1 hinge domain. Peptides that interfere with HP1a/HOAP interactions in co-precipitation experiments also displace HP1 from the heterochromatic chromocenter of polytene chromosomes in larval salivary glands. A mutant for the HOAP protein also suppresses centric heterochromatin-induced silencing, supporting a role for HOAP in centric heterochromatin.


Asunto(s)
Cromatina/química , Proteínas Cromosómicas no Histona/química , Proteínas de Drosophila/química , Drosophila/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Cromatina/metabolismo , Cromatografía en Gel , Cromosomas/metabolismo , Cruzamientos Genéticos , Proteínas de Unión al ADN , Femenino , Heterocromatina/metabolismo , Immunoblotting , Masculino , Microscopía Fluorescente , Datos de Secuencia Molecular , Complejo de Reconocimiento del Origen , Péptidos/química , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Telómero/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA